Sitecore Conmmerce Connect
The Commerce Connect Integration Guide Rev: 5 January 2015

‘ Sitecore

Sitecore Commerce Connect

The Commerce Connect
Integration Guide

A Developer's Guide to integrating Commerce Connect with an external commerce system

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Sitecore Conmrerce Connect

Table of Contents

(O g F-Y o1 (=T o R | 0 (oY [Tod 1T] o NPT PPPRN 4
Chapter 2 Integrating With COMMErCE CONNMECT ... iuuuiiiiiiiiie et e s 5
2.1 (O YT VL= SO UPPPTRPPPPPTRUPN 6
2.1.1 A Customizable DOmMain MOGE........coouuiiiiii e et e e 6
2.1.2 SEIVICE LAYEI AP ettt 6
SEIVICE METNOOS ...t ettt e e et et et e e et e e e et e e e eaa e e e enann s 7
T o U=t o =N =] = £ T PP 7
TS U1 0] o = ox £ 8
20 R T o o 1= 1 =T 8
2.1.4 Passing Data between Pipeline COMPONENTS........oiiiiiiiiiiii e 13
2.1.5 SYSIEIM MBS SAgE S . ittt ettt ettt ettt ettt ettt e e e et ea e eas 13
P2 R T S U o ol 31 TP PPT PP PPTRPN 13
2200 R A oY o) o 8T =1 o o 13
P2 T < 1 o1 = Yox (o Y/ 14
P20 R I -V o = U1 = (o 1Y o = 15
2.1.10 (o] g1 = Yox | o= To! (o] 4V PP 15
2.1.11 tEM ClasSifiCaAtiONSEIVICE et e et e e e e e e e eaa e eeee 16
2.1.12 COMMEICECONTIEXE. ... ieti ittt e e et et e e e e e e e e e eaa e 16
2.1.13 SEIVICEPTOVIARIS ...ttt ettt et e e e e 16
2.2 SIVICE LAY I SPECITTICS ittt e e e e 17
A R O Y { B ST=T AV ot IR = PPN 17
Different waysto WOrk With @an ECS ...ttt e e e e e e e e aes 17
(67011 1T TUT = 11 o] o IS PP 17
oL TSP UOPPPTOSUPTRPPPN 17
Storing a copy Of the CaMt 10CAIlY........iiii e 17
Abandoned Cart Engagement AUtomation Plan...........ooiiiiiiiiicii e 18
W A @] (o (Y BT =T 4V o= T - V= PP 18
(o] o) 1T TUT = 11 o] o IS PP 18

01 11PN 18
New Order Placed Engagement AUtOmMation PIAN............ccoooiiiiiiiiiiiiie e 19
PPl NS . . et 19
2.2.3 INVENTOIY SEIVICE LAYET ...uitiiii ettt ettt e e e 19
PPl NS . .ttt 19

(@70 0o 18 = 11 o o 19

S LU =TT PO P TP PPPPPPTTTTN 20
StockStatus and StockDetailsLevel ENlieS........coouuiiiiiii e 20
Extending the InventoryProdUCt ENGLY.......ccuuiiiiiiii et e ee 21
2.2.4 CUSIOMEIS NG USBIS ciiiuiiiiiiiiieeiiit ettt ettt e et e et e et e et e et et e e eeta e eena s 21
What is the difference between a User and @ CUSIOMET........cocuuiiiiiiiiieiiiiieee e 21
Different waysto WOrk With @n ECS ...ttt et e et e e e e e e e e ees 22

(7] 1 170 [UT = U1 o o IS PP 22

B il S, .ot e ettt e e e et e et e e e et e e e aaee 22

LT oL L= SRS 23
Chapter 3 ProducCt SYNCRIONIZAtiON..........uiiiiiii e e e e e eaa s 24
3.1 The basics of product SYNCNIONIZATIONiiii i e 25
3.1.4 Integrating With CONNECL...........ooiiiiiiiiiiii e Error! Bookmark not defined.
3.1.1 Repository design Patterneeiiieiiiiiiiiieee e Error! Bookmark not defined.
3.1.2 2-WaY SYNCRTONIZATION ..uueiii ettt ettt e e et e e e e e e eene 25
70 R T 1o = 1 U= o T L = T 26
3.1.4 Integrating With CONNECT.......ccoiiiiiiiii e e et e e e e eene 28
3.1.5 RepOSIHOry deSIgN PALIEIN ...ociiiiiiiiiii ettt e e 30
T B T 1 1V = '] o [o PP SO PP PP PPPPPPPPN 31
0 N A [o 1= oo R 31
THE AETAUIT INAEX ettt e et e e e e e e e es 32

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 2 of 59

Sitecore Conmrerce Connect

THE PIOTUCE TNAEX ..ttt ettt e e ettt et e e e e e e e e 32

3.2 The Connect product data MOEL..........oouiiiiiiiie e 35
3.2.1 Minimum ProAUCE CONMCEPES ..uuiiiiiieiiii e et e ettt e ee et s e e e et s e e e et s e ee et s e eaaaaeeeesnnaeeesnnaeeennnaaaes 36
3.3 Item temMplatesS and SITUCTUIEiiiii e e e e e e e e e e e et e e e eaaneeeeens 38
3.3.1 Item Templatesused in the Product Data Modelooviiiiiiiiiiiiin e 38
Rule of Thumb and Naming CONVENTONSciuuiiiiiiiii et e et ea e ea e een 38
=T oI =T 0T o] o T PPN 38
BranCh 1EM Dl At S. . it e aan 42
3.3.2 Main product data in one product repository bUCKet..........ooceiiiiiiiiii e, 43
PIOQUCE VATTANTS ...ttt et e e et e e et b e e et tb e eea e e e et e aeeaanaaaes 44
3.3.3 Product relations, resources and SpecifiCationS..........ccoovviiiiiiiiiii e 44
T A Y o 1Yol o= 1o 1= 45
Y o L= o o= Lo I PP 46

Sy o L=Tor o= Ui o] g Y= 1N [47

3.4 The Object DOMaiN MOGEL....... oo et e e e et e e e e e e e e eenaeaees 48
3.5 How to Implement @ Custom Product ENLitY..........ccoiviiiiiiiiiieciiiie e e 49
3.6 How to Create a Custom ResolveChangesP roCe SSOrvvveiiiiiiiiiiiieeciee e 51
3.7 How to Create a Custom Synchronization Strategy...........ooeeevveeumiiiiiieeriiiiiie e 53
3.8 How to Implement @ CUStOM ID GENEIALON.........iiieiiieiiiiii ettt e et eeeeeens 55
3.9 PerfOrMAaNCE tUNING ... oottt et e ettt e e e et e e e eeeeenns 57
3.10 Delayed Bucket SYNChIONIZAIONiiiiiiiiiiiii e 59

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 3 of 59

Sitecore Conmrerce Connect

Introduction

Commerce Connectis an e-commerce framework designed to integrate Sitecore with
different external commerce systems and at the same time incorporate customer
engagement functionality provided in the Sitecore Customer Engagement Platform
(CEP).

Commerce Connect consists of anintegration APIthatincorporates customer
tracking by triggering goalsand page-events, and uses engagementautomation
plans for following-up on customerinteraction. In addition, Commerce Connect
comes with e-commerce specific rendering rule conditionsfor acting on the customer
interactions, cart contentand orders placed etc.

For a general introduction and overview of the componentsin Commerce Connect,
see the Commerce Connect Overview document.

This guide describes the architecture, APl and configuration of Commerce Connect
for API developers who create connectors for integration with external commerce
systems.

If you are a developerwho create Sitecore solutions and are looking for information
about how to use Commerce Connect for creating B2C or B2B shops with e-
commerce functionality, see the Commerce Connect developer's guide

e Chapter 1 — Introduction
This chapter contains an introduction forthis guide.

e Chapter 2 — Integrating with Commerce Connect
This chapterdescribes the Commerce Connect Connector architecture and how to
customize itas abackend developercreating integration with an external commerce
system.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The

contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 4 of 59

Sitecore Conmrerce Connect

Integrating with Commerce Connect

A Commerce Connect connector is needed to integrate Commerce Connect with an
external commerce system (ECS). The typical connectorconsists ofa number of
custom processors inserted inthe Commerce Connect defined pipelines, and works
with the ECS, eitherdirectly or through a web service.

Different service layers work independently of each otherand can therefore be
integrated independently. Forexample, products, carts and prices could be integrated
from three different systems.

There are common features and unique featuresfor each ECS and typically datais
stored in different ways.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 5 of 59

Sitecore Conmrerce Connect

2.1 Overview

All of the Commerce Connect integration service layers are based on:

e A customizable domain model.

e An APlexposed asa service layerwith the methods accepting customizable request objects
and returning customizable result objects.

e A numberof pipelines, one or more per service method.

The following sectionsdescribe each of the above bullet pointsin more details.

2.11 A Customizable Domain Model

Each service layer contains a set of entity classes reflecting the domain model. The domain model
objects are used when operating with the APIs. The APIs acceptsthe objects as part of the input
parameters and return objects.

The domain model haspurposely been kept at a minimum, knowing that all vendorsto some degree
store differentinformation and one model will notfit all. Howeverthe domain modelsinclude enough
information, domainobjectsand parametersto cover the common scenarios thatare used in all
shops.

It is expected that some of the domain model objectsare customized for each integration with a
different ECS. Commerce Connect might contain domain objectsthat have no corresponding
implementation in the ECS and in those cases itis OK to leave them as-is. For more information see
the detailsin the corresponding section for each service layer.

With product synchronization there is in addition to the domain model objectsalso a corresponding
item domain model matching the entity classes. The entitiescan be customized by changing the
configuration section. For more information see the next section and section 2.1.8.

The domain modelsare customizable so that:
e Alldomain model objectscan be inherited and extended with custom properties
o All nested objectscan be inherited and extended with custom properties

o All service methods keep the existing defined signature, even when used with customized
domain objects

It's recommended to create an abstraction layer on top of the ECS that extracts and manage the
information to be exchanged with Commerce Connect. The approach is similarto the Bridge design
pattern used in computerscience and makes iteasier to continuously manage the integration asboth
Commerce Connect and the ECS evolves over time. It also makes it easier to exchange the
information, ifthe Commerce Connect domain model and the ECS abstraction layer objects have
corresponding and similar object signatures.

Some of the service layers save data in Sitecore, aswell as pass the data on to the ECS. Whenever

datais persisted in Sitecore, the Repository patternisused to manage loading and saving data. This
makes it easy to replace the actual repository where datais persisted. For more information see the

Service Layer APl section as well as MSDN and Fowler.

2.1.2 Service Layer API

Every service layer APl contains a number of abstract and generic methods for communicating with
the ECS. Information flowsin both directions. Product information, prices, and stock information
needsto be read from the ECS so that it can be presented to the visitor on the Ul. Shopping Cart

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 6 of 59

http://msdn.microsoft.com/en-us/library/ff649690.aspx
http://www.martinfowler.com/eaaCatalog/repository.html

Sitecore Conmrerce Connect

content, customer accountinformation and shipping information must be parsed over to the ECS so
thatan order can be created.

The default service layers should be sufficientin most cases, butthey can be customized and
substituted. For more information, see the appropriate sub system inthe following section.

Each method on the service layers accepts a single Request object and returns a single Result
object. Both the Request and Result objectscan be customized individually foreach method for
maximum flexibility. The service layerinterface remains the same, even when the domain model
objects are customers, in addition to the parametersgoing in and the returned results.

If you have customized the Request or Result object for a method, then you can use the
corresponding extension method, which accepts generics.

Example:

The default method signature foradding a line to a shopping cart looks like this:

public virtual CartResult AddCartLines ([NotNull] AddCartLinesRequest request)

and the generic version of the same method looks like this:

public static TAddCartLinesResult AddCartLines<TAddCartLinesResult>([NotNull] this
CartServiceProvider cartProvider, [NotNull] AddCartLinesRequest request)

Service Methods
If possible, the following naming convention should be used for all methodson a service provider:

e CreateEntityName (e.g. CreateCart)
e GetEntityName (e.g. GetCart)

e DeleteEntityName (e.g. DeleteCart)
e UpdateEntityName (e.g. UpdateCart)

If possible, the following naming convention should be used for all methodsthat manipulate related
itemson an entity:

e AddRelatedEntityName (e.g. AddLineItem)
e RemoveRelatedEntityName (e.g. RemoveLineItem)
e UpdateRelatedEntityName (e.g. UpdateLineItem)

Request Parameters

A service method should take only a single request objectas a parameterand thatrequest object
must inheritfrom a ServiceProviderRequest. By using a single request objectinstead of multiple
parameters, the same service methods remain usable regardless of the customization. As service
methods require additional data to function, simply extending the request object with new parameters
will expose the newly required data to the presentation tierwithout having to modify the service
method.

Customizing request objects

There are two options when extending arequest objectto handle more parameters. The first optionis
to simply extend the appropriate request class, similarto the following example :

public class CustomLoadCartRequest : LoadCartRequest
{
public CustomLoadCartRequest (string shopName, string cartId,
string userId, string customProperty)
:base (shopName, cartId, userId)
{
this.customProperty = customProperty;

}

public string customProperty { get; protected set; }

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 7 of 59

Sitecore Conmrerce Connect

}

In some cases you will not be able to extend a request, instead, you can use the property bag on the
request to pass down any properties you want:

request.Properties["customProperty"] = "customValue";

Result objects

Result objects generally mirrorrequest objects, with the difference that theyinherit from

ServiceProviderResult andhave acollectionforsystem messages. If possible, always return
system messages instead of throwing exceptions.. There will be times where it makes sense to throw
an exception, but graceful recovery and exceptions are expensive actions.

You can set messages on aresult by using the following pattern:

var message = (SystemMessage)this.entityFactory.Create ("SystemMessage") ;
message.Message = “your custom error message goes here”;
args.Result.SystemMessages.Add (message) ;

2.13 Pipelines

Each service method launches a pipeline with the same name. As part of the initial pipelinebeing
executed, one or more additional or shared pipelinesmay be called and executed. For example,

SaveCart Or SynchronizeProductArtifacts.

In Sitecore, the default pipeline argumentscontain Request and Result properties, which have
Properties of type dictionary, andcan contain arbitrary data to be used by pipeline processors.

Commerce Connect uses the Request.Properties dictionaryto store datathat you needto
synchronize. There are processors thatread and write the custom data.

Valuesthat are stored in Request.Properties are internal temporary data used to carry
information between the processors in the pipeline. Forexample, the CreateOrResumePipeline
includesthe FindCartInEAState processor thatstores the ID of the cart. ThisID is then used the
RunLoadCart processor to specify the ID ofthe cart to be loaded.

Data read and stored inthe Request.Properties dictionaryisvisible between processors within
the pipeline.

The following table containsthe data of the cart related the pipelinesstored in the pipeline arguments
Request.Properties:

Property Name Data Description
Pipeline

CreateOrResumeCart CartId Holds the ID of the cart found in the writer
processor and consumed by the reader
processor inorder to load the cart from
the external system.

Writer processor
FindCartInEaState
Reader processor
RunLoadCart

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 8 of 59

Sitecore Conmrerce Connect

Pipeline

Property Name

Data Description

ResumeCart

CartSourceStateld

Holds the ID of the cart state thatthe
MoveVisitorToInitialState
processor moves visitors from.

Writer processor:

CheckCanBeResumed
Reader processor:
MoveVisitorToInitialState

PreviousStateName

Holds the name of state thatthe
TriggerCartResumedPageEvent
processor uses to resume acart from.

Writer processor
CheckCanBeResumed

Reader processor
TriggerCartResumedPageEvent

CartDestinationState
Id

Holds the ID of the cart state thatthe
MoveVisitorToInitialState
processor moves visitors to.

Writer processor
CheckCanBeResumed

Reader processor
MoveVisitorToInitialState

The following table containsthe data of the product related pipelines:

Pipeline

Property Name

Custom Data Description

GetSitecoreProductLis
t

SitecoreProductlIds

Holds alist of the product IDs of
Sitecore.

Writer processor
GetSitecoreProductList

Reader processor
EvaluateProductListUnionToSync
hronize

SynchronizeClassifica
tions

SitecoreClassificati
onGroups

Holds the classification groups in
Sitecore to be synchronized.

Writer processor:
ReadSitecoreClassifications
Reader processor
ResolveClassificationsChanges

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 9 of 59

Sitecore Conmrerce Connect

Pipeline

Property Name

Custom Data Description

ClassificationGroups

Holds the classification groups in the
external commerce system to be
synchronized.

Writer processor:
ReadExternalCommerceSystemClas
sifications
Reader processors:
e ResolveClassificationsCh
anges
e SaveProductClassificatio
nsToSitecore

SynchronizeClassifica
tionsSpecifications

ProductClassificatio
nGroups

Holds the product classification groups
to be synchronized.

Writer processor:
ReadExternalCommerceSystemClas
sificationsSpecifications
Reader processor:
SaveClassificationsSpecificati
onsToSitecore

SynchronizeDivisions

SitecoreDivisions

Holds product divisions in Sitecore to be
synchronized.

Writer processor
ReadSitecoreDivisions
Reader Processor
ResolveDivisionsChanges

Divisions

Holds the product divisionsin the
external commerce system to be
synchronized.

Writer processors.
e ResolveManufacturersChan
ges
e ReadExternalCommerceSyst
emManufacturers
Reader processor:
ResolveDivisionsChanges

SynchronizeManufactur
ers

SitecoreManufacturer
s

Holds the Sitecore manufacturerto be
synchronized.

Writer processor
ReadSitecoreManufacturers
Reader processor
ResolveManufacturersChanges

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 10 of 59

Sitecore Conmrerce Connect

Property Name
Pipeline

Custom Data Description

Manufacturers

Holds alist of the manufacturers in the
external commerce system to be
synchronized.

Writer processor:
ReadExternalCommerceSystemManu
facturers
Reader processors:
e ResolveManufacturersChan
ges
. SaveManufacturersToSitec
ore

SynchronizeProductEnt ProductFromSitecore
ity

Holds the products in Sitecore to be
synchronized with the external
commerce system.

Writer processor:
ReadProductFromSitecore
Reader processor:
ResolveProductChanges

Product Holds a product from the external
commerce system with Sitecore.
Writer processor:
e ReadExternalCommerceSyst
emProduct
e ResolveProductChanges
Reader processor:
ResolveProductChanges
SynchronizeTypes SitecoreProductTypes Holds the product types in Sitecore to be
synchronized with the external
commerce systems.
Writer processor:
ReadSitecoreTypes
Reader processor:
ResolveTypesChanges
ProductTypes Holds the product types in the external

commerce systems to be synchronized
with Sitecore.

Writer processor:
ReadExternalCommerceSystemType
s

Reader processors:

e ResolveTypesChanges
] SaveTypesToSitecore

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 11 of 59

Sitecore Conmrerce Connect

Pipeline

Property Name

Custom Data Description

SynchronizeGlobalSpec
ifications

Specifications

Holds the product specifications to be
synchronized.

Writer processor:
ReadExternalCommerceSystemGlob
alSpecifications

Reader processor:
SaveGlobalSpecificationsToSite
core

SynchronizeProductDiv
isions

DivisionIds

Holds the division IDs to be
synchronized.

Write processor:
ReadExternalCommerceSystemProd
uctDivisions

Reader processor:
SaveProductDivisionsToSitecore

SynchronizeProductMan
ufacturers

ManufacturerIds

Holds the manufacturerIDs to be
synchronized.

Writer processor:
ReadExternalCommerceSystemProd
uctManufacturers

Reader processor:
SaveProductManufacturersToSite
core

SynchronizeProductRes
ources

ProductResources

Holds the product resources to be
synchronized.

Writer processor:
ReadExternalCommerceSystemProd
uctResourceBase

Reader processor:
SaveProductResourcesToSitecore

SynchronizeProducts

ExternalCommerceSyst
emProductIds

Holds the product IDs in the external
commerce systems to be synchronized.

Writer processor:
GetExternalCommerceSystemProdu
ctList (pipeline:
GetExternalCommerceSystemProdu
ctList)

Reader processor:
EvaluateProductListUnionToSync
hronize

SynchronizeProductTyp
es

ProductTypelds

Holds the product type IDs to be
synchronized.

Writer processor:
ReadExternalCommerceSystemProd
uctTypes

Reader processor:
SaveProductTypesToSitecore

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 12 of 59

Sitecore Conmrerce Connect

Property Name Custom Data Description
Pipeline

SynchronizeResources Resources Holds the product resources to be
synchronized.

Writer processor:
ReadExternalCommerceSystemReso
urces

Reader processor:
SaveResourcesToSitecore

SynchronizeProductRel | RelatedProducts Holds the related productsto be
ations synchronized.

Writer processor:
ReadExternalCommerceSystemProd
uctRelationsBase

Reader processor:
SaveProductRelationsToSitecore

SynchronizeTypeSpecif | SpecificationCollect Holds the specification collectionto be
ications ion synchronized.

Writer processor:
ReadSitecoreTypeSpecifications
Reader processor:
SaveTypeSpecificationsToExtern
alCommerceSystem

2.14 Passing Data between Pipeline Components

While all pipeline componentsin a pipeline should operate independently without knowledge of what
other componentshave done, there are going to be occasions, where information will need to passed
between components to avoid repeating the same action over and over again.

In these situations, use the RequestContext propery of the base request object. Thisis a property
bag where you can store any information you need to pass between components.

request.RequestContext.Properties["componentSensitiveData"] = "customValue";

2.15 System Messages

The base result objectreturned from all pipeline requests containsa SystemMessages collection,
which should be used by all pipeline processors to communicate any messages from the ECS to the
presentation tier.

2.16 Success

The base result objectreturned from all pipeline requests containsa Boolean property called
Success. Thisproperty should be used to indicate if the initial request passed down to the pipeline
was executed successfully. It is recommended thatin addition to setting the Success property to false,

add a failure message to the SystemMessages collection.

2.1.7 Configuration

Each service layer has an associated configuration stored in a separate include configuration file:

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 13 of 59

Sitecore Conmrerce Connect

Cart Service Layer - /App Config/Include/Sitecore.Commerce.Carts.Config
Orders Service Layer - /App Config/Include/Sitecore.Commerce.Orders.Config
Inventory Service Layer -

/App_Config/Include/Sitecore.Commerce. Inventory.Config

Customers and Users Service Layer -

/App Config/Include/Sitecore.Commerce.Customers.Config

Pricing Service Layer - /App Config/Include/Sitecore.Commerce.Prices.Config
Product Synchronization Service Layer -

/BApp Config/Include/Sitecore.Commerce.Products.Config

An additional configuration file,

Sitecore.Commerce. Products .DelayedSyncProductRepository.config.disabl
e, canbe enabledifthe synchronization of products into the Bucket occurs at the end of
Commerce Connect synchronization instead of immediately.

The sitecore.Commerce.Config file containsthe global configuration of Commerce Connect:

EntityFactory
EaPlanProvider
ContactFactory
ItemClassificationService
CommereContext

Each isdescribed in the following sections

2.18

EntityFactory

All entitiesused in Commerce Connect can be customized through configuration using an entity
factory. The Entity Factory is based on the Factory design pattern, and the defaultimplementationis
based on the standard Sitecore Factory.

If anotherfactory, Dependency Injection (DI) or Inversion of Control (IOC) implementationispreferred,
the defaultimplementation can be replaced.

Followthese steps to use a custom factory:

1. Create new custom factory class and implement IEntityFactory interface.

The interface has one Create method that accepts a string containing the name of the entity to
be instantiated

namespace Sitecore.Commerce.Entities
{
/// <summary>
/// Creates an entity by entity name. The IEnityFactiry allows to substitute the

default entity with the extended one.

/// </summary>
public interface IEntityFactory
{
/// <summary>
/// Creates the specified entity by name.
/// </summary>
/// <param name="entityName">Name of the entity.</param>
/// <returns>The entity.</returns>
[NotNull]
object Create ([NotNull] string entityName) ;

2. Register custom EntityFactory class in Sitecore.Commerce.config.

To do this, change the type attribute value of “entityFactory” element to the custom
EntityFactory type.

<!-- ENTITY FACTORY

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 14 of 59

Sitecore Conmrerce Connect

Creates an entity by entity name. Allows to substitute default entity with
extended one.
-—>
<entityFactory type=" Sitecore.Commerce.Entities.EntityFactory, Sitecore.Commerce”
singleInstance="true" />

The defaultimplementation looks up the actual type to instantiate in the configuration. Each service
layerhas its own section called <commerce.Entities>. Beloware the default entitiesfor Carts:

<!-- COMMERCE ENTITIES
Contains all the Commerce Connect cart entities.
The configuration can be used to substitute the default entity
implementation with extended one.
-—>
<commerce.Entities>
<CartBase type="Sitecore.Commerce.Entities.Carts.CartBase, Sitecore.Commerce” />
<Cart type="Sitecore.Commerce.Entities.Carts.Cart, Sitecore.Commerce” />
<CartAdjustment type="Sitecore.Commerce.Entities.Carts.CartAdjustment,
Sitecore.Commerce” />
<CartLine type="Sitecore.Commerce.Entities.Carts.CartLine, Sitecore.Commerce” />

<CartProduct type="Sitecore.Commerce.Entities.Carts.CartProduct,
Sitecore.Commerce” />

<CartOption type="Sitecore.Commerce.Entities.Carts.CartOption,
Sitecore.Commerce” />
</commerce.Entities>

In order to use a custom entityitis necessary to perform the following two steps:

1. Create a new Entity class

2. Register the custom Entity class in the configuration section <commerce.Entities>.

To do this, change type attribute value of “entityFactory” element to the custom EntityFactory
type.

2.19 EaPlanProvider

Thisclass is used to figure out an engagement plan name based on the current store hame in
combination with and engagement plan name or state name. Itis possible to implementyourown
version of this by implementing IEaPlanProvider and registering thatclass name in the
eaPlanProvider section of the Sitecore.Commerce.config.

2.1.10 ContactFactory

Thisclass is used to getthe id of the current runtime user. The defaultimplementation isdependent
on Sitecore Analyticsfor tracking; ifthis does not suit your needs you can change it by extending the

ContactFactory class andoverriding the GetContact method.

Belowis a copy of how the defaultinstance works. Once you get the id of your user from the ECS you
should identify the Tracker.Current.Contact with thatid (using the

Tracker.Current.Session.Identify () method),and from that pointon thisidwill be returned

by the ContactFactory. If noidisavailable from the external user then the id created by Sitecore
Analytics will be used instead.

public virtual string GetVisitor()
{
var user = Tracker.Current.Contact.Identifiers.Identifier;
if (string.IsNullOrEmpty (user))
{
user = Tracker.Current.Contact.ContactId.ToString () ;
}

return user;

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 15 of 59

Sitecore Conmrerce Connect

2.1.11 ItemClassificationService

Thisisa simple class thatis used to help determine what type somethingis, the current version is
used to verify ifanitemisa product, ifatemplate is a product template, and to get the product id from
anitem.

2.1.12 CommerceContext

The CommerceContext class isused to determine the current product and inventory location thatis
the focus of the site. Thisclass is currently only used by the inventory rule conditionswhen no stock
location or product id is provided to calculate against.

2.1.13 ServiceProviders

Each service layer has its own interface which can be customized, these providers contain the service
methods for interacting with the appropriate sub system. All service providers should inherit from

ServiceProvider anditisrecommendedto have a genericsversion of the class in which each
service method is generics based.

Sample service method:

public virtual GetCartsResult GetCarts ([NotNull] GetCartsRequest request)

{
return this.RunPipeline<GetCartsRequest, GetCartsResult> (PipelineName.GetCarts,
request) ;

}
Generics extension method example:

public static TGetCartsResult GetCarts<TGetCartsRequest, TGetCartsResult>([NotNull]
this CartServiceProvider cartProvider, [NotNull] TGetCartsRequest request)

where TGetCartsRequest : GetCartsRequest

where TGetCartsResult : GetCartsResult, new()

{
return cartProvider.RunPipeline<GetCartsRequest,
TGetCartsResult> (PipelineName.GetCarts, request);

}

If an existing service provider required a new service method, consider extending the service provider
and adding the new method instead of creating a whole new service provider. The various sub
systems and theirservice providers are listed below.

Shopping Cart
Sitecore.Commerce.Services.Carts.CarntServiceProvider

Orders

Sitecore.Commerce.Services.Orders.OrderServiceProvider

Pricing

Sitecore.Commerce.Services.Prices.PricingServiceProvider

Product Synchronization
Sitecore.Commerce.Services.Products.ProductSynchronizationProvider
Customersand Users

Sitecore.Commerce.Services.Customers.CustomerServiceProvider

Inventory

Sitecore.Commerce.Services.Inventory.InventoryServiceProvider

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 16 of 59

Sitecore Conmrerce Connect

2.2 Service Layer Specifics

Each service layer in Commerce Connect follows the same design pattern, in the sections belowthe
specific properties and configuration optionsunique to each service layer are described.

2.2.1 Cart Service Layer

Different ways to work with an ECS
The cart integration can be done in four different ways:

1. Thecartisonlypassed to the external commerce system when submitting an order.

If the integration ismade againstan ERP system, shopping cart functionality istypically not
provided and needsto be handled elsewhere, in this case in Commerce Connect.

In this case the cart related pipelinesonly contain the default Commerce Connect provided
processors. Thisis very easy to setup as no work is involved in creating the integration other
than adding a pipeline in the Orders service layer, which will take the shopping cart as input
for creating an order.

2. Thecartisonly”saved” inthe external commerce system aftereach change (OnSave)

This option will minimize the number of callsto the external commerce system and thereby
improve performance. It will however be more difficult forthe external commerce system to
act upon updates made to the cart in Sitecore, like making changesto cart lineswhen
products are added to the cart e.g.:
e There mightbe a discountthat needsto be added due to a sale or due to adding a
bundled product or a certain combination of productstriggering a discount.
e There mightbe an additional “free” product that needs to be added due to a sale.

3. All cart actions are forwarded to the external commerce system (AddLine, UpdateCart,
etc.). Thisoption providesthe most flexibility foradvanced scenarios as explained in #2, but
italso makes more callsto the external commerce system decreasing performance.

4. Cart dataisonlypersisted inthe external commerce system. In order to do so, the Commerce
Connect specific processors LoadCartFromEAState (LoadCart),

SaveCartToEAState (SaveCart), FindCartInEAState & RunResumeCart
(CreateOrResumeCart), DeleteCartFromEaState (deleteCart) and
BuildQuery + ExecuteQuery (GetCarts) must be removed from the pipelines
mentioned in parentheses.

The defaultisoption number2.

Configuration

All configuration forthe cart subsystem can be found in the Sitecore.Commerce.Carts.config file. Here
you will find all detailsforthe entities, pipelines, and repositories used by the cart system.

Entities

The default cart entitiesfor Commerce Connect only assume some of the basic cart information that
will be used across all commerce systems, itisexpected thatyou will need to extend these entities.
When you need to extend any of the default entitiesyou can achieve thisby creating a new class that
inheritsfrom the appropriate type, and then patching the appropriate entity under
<commerce.Entities> inthe Sitecore.Commerce.Carts.config file. You can read more about
individual entitiesin the Developer Guide.

Storing a copy of the cart locally

Commerce Connect gives you the option of storing a copy of your cart locally to help reduce round
trips to your ECS or implement functionality that the destination ECS might now support. You are not
required to use this functionality, and you will not miss out on any functionality by not using it.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 17 of 59

Sitecore Conmrerce Connect

If you are not going to make use of thisfunctionality the Commerce Connect specific processors
LoadCartFromEAState (LoadCart), SaveCartToEAState (SaveCart),
FindCartInEAState & RunResumeCart (CreateOrResumeCart),
DeleteCartFromEaState (deleteCart) and BuildQuery + ExecuteQuery (GetCarts)
must be removed from the pipelinesmentioned in parentheses.

To store the data locally you must create a class thatimplements
Sitecore.Commerce.Data.Carts.ICartRepository and patchthe
eaStateCartRepository elementinthe Sitecore.Commerce.Carts.config with the new full class
name. Commerce Connect ships with two sample repositories called

EaStateSglBasedCartRepository andEaStateCartRepository, these are onlysample
repositories and should notbe used in a production scenario.

Abandoned Cart Engagement Automation plan

The planis provided as a branch template and multiple instancescan be created. There should be
oneinstance per shop. The default plan can be customized with different or more states as is needed.

To make the plan work, two Sitecore Commerce specific conditionsand an action has been provided:

e Condition: Has Empty Cart?
The condition will retrieve the cart of the current visitor and check ifit'sempty or not, e.qg. if
there are any carn linesinit. By default thiswill on work with one cart per user.

e Condition: Has Provided E-mail?
The condition will retrieve an e-mail forthe current visitor if they have one.

e Action: Set Cart Status
The status of the cart itselfisalso set to “abandoned”. Itis reflected when searching for carts
across all visitors using the GetCarts method on the service layer.

The plan also uses the standard Send E-Mail Message action, which is provided with CEP, to send
out the notificatione-mail informingthe user about the abandoned cart an encouraging him/herto

return and complete the purchase.

2.2.2 Orders Service Layer

The orders service layer is essentially an extension of the cart service layer.

Configuration

All configuration forthe order subsystem can be found in the Sitecore.Commerce.Orders.config file.
Here you will find all detailsforthe entities, pipelines, and repositoriesused by the cart system.

Entities

For the most part the default orderentitiesfor Commerce Connect are the same classes used by cart
with the exception of Order and OrderHeader, itisexpected that you will need to extend these
entities. The Order entity simply extends Cart and adds an OrderId property, and OrderHeader
extends from CartBase which simple services as a class with some basic info about an Order. When
you need to extend any of the default entitiesyou can achieve this by creating a new class that
inheritsfrom the appropriate type, and then patching the appropriate entity under
<commerce.Entities> inthe Sitecore.Commerce.Orders.configfile. You canread more about
individual entitiesin the Developer Guide.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 18 of 59

Sitecore Conmrerce Connect

New Order Placed Engagement Automation Plan

The planis provided as a branch template and multiple instancescan be created. There should be
one instance per shop. The default plan only comeswith an initial state and can be customized with
differentor more states as is needed.

Pipelines

The order layer only ships with four pipelines submitVisitorOrder, getVisitorOrder,
getVisitorOrders, andvisitorCancelOrder. By defaultall thatthese pipelineswilldois
triggera goal, exceptfor submitVisitorOrder, which will also add the order to an Engagement
Automation Plan. Each of these pipelinesmust be filled in with an appropriate processor that knows
how to communicate to an ECS. For more detailson the requests and results used by these pipelines
please check out the Developer Guide.

2.23 Inventory Service Layer

The inventory service layerprovides read-only integration with inventory / stock information from an
ECS. However, thisservice layercan be extended to support read-write integration if desired.

Pipelines
The pipelinesofthe inventory service layer can be split into four categories:

1. Runtime Integration
a. commerce.inventory.getStockinformation
b. commerce.inventory.getPreOrderableinformation
c. commerce.inventory.getBackOrderablelnformation
2. Search Integration
a. commerce.inventory.stockStatusForindexing
3. Event Raising
a. commerce.inventory.visitedProductStockStatus
b. commerce.inventory.productsAreBackinStock
c. commerce.carts.addCartLines
4. Products Back In Stock Engagement Plan
a. commerce.inventory.visitorSignUpForStockNotification
b. commerce.inventory.removeVisitorFrom StockNotification
c. commerce.inventory.getBackinStockinformation

Of these pipelines, only the following require integration with the ECS:

e commerce.inventory.getStockinformation

e commerce.inventory.stockStatusForindexing

e commerce.inventory.getPreOrderableInformation

e commerce.inventory.getBackOrderablelnformation
e commerce.inventory.getBackinStockinformation

Extending the otherpipelinesis purely optional.

Configuration

All configuration forthe inventory service layer can be found in the
Sitecore.Commerce.lnventory.config file. Here you will find all detailsforthe entities, pipelines, and
repositories used by the inventory system. It ishighly recommend that you do not modify thisfile
when adding your ECS connector components to the pipelines, overriding entity definitions, etc.
Instead, use Sitecore configuration patching,and include all of your ECS configuration in a separate
file named {ECSName}.Connectors.Inventory.config.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 19 of 59

Sitecore Conmrerce Connect

Entities

In the stock inventory system, there isno inheritance hierarchy forentitie s, and all of the connect
pipelinestreatthem as read-only entities. If you wish to support updating stock information through
the inventory system, you will need to extend the system with your own pipelinesand service provider
methods.

StockStatus and StockDetailsLevel Entities

The stockStatus and StockDetailsLevel entitiesare sightly differentfrom traditional entities, in
thatthey are intended to represent enumeration values. StockStatus represents a standard

enumeration, and StockDetailsLevel represents a flags enumeration. If eitherofthese entities
need to be extended for an ECS, the extended entitiesshould also expose constants / read -only

properties that represent the possible values for the entity. For example, if extending StockStatus
to contain anew Downloadable value, thenthe extended EcsStockStatus entity should expose a
static readonly fieldthatrepresents the Downloadable value (i.e. public static
StockStatus Downloadable = new EcsStockStatus (5, “Downloadable) ;)

The InventoryProductBuilder

The InventoryProductBuilder is ahelperclass used inthe inventory system to build
InventoryProduct entitiesbased onthe current site context, compare InventoryProduct
entities, etc. If you extend the InventoryProduct entity, this class will also need to be extended.
Configuration forthe ITnventoryProductBuilder islocatedin configuration at
sitecore/inventoryProductBuilder

The InventoryAutomaionProvider

The InventoryAutomationProvider is ahelperclass used by the conditionsan actionsinthe
“Products Back in Stock’ engagement automation plan to access automation state data as strongly -
typed classes. Automation state data in the inventory system is stored as JSON serialized strings.
The InventoryAutomationProvider isresponsible for serializing and deserializing information
stored in the automation state data row.

Products Back in Stock Engagement Automation Plan

The planis provided as a branch template and multiple instancescan be created. There should be
oneinstance per shop. The default plan can be customized with different or more states as isneeded.
Its purpose is to notify customers by email when a product they are interested inisback in stock and
available fororder.

Thisautomation plan maintainsstate data thatis serialized in JISON format. The following valuesare
used to track customer ‘back in stock notification requests, all of which represent alist of

StockNotificationRequest objects:
e commerce.productNotifications
Containsthe list of valid notification requeststhat the customer isinterested in.

e commerce.expiredNotifications
Containsthe list of notificationrequests that have expired.

e commerce.backinStockProducts
Containsthe list of products that are backin stock.
To support thisautomation plan, two new conditionsand two actions have been created.

e Action: Remove Expired Back In Stock Notifications
This action will update the automation plan state data, and remove ‘back in stock notification
requests that have past theirinterest date. The default interest date is 180 days after the day
the customer requested to be notified when a product is back in stock

e Action: Send Back In Stock Notification Email

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 20 of 59

Sitecore Conmrerce Connect

Thisaction sends email to the customers when a product they are interested has become
back in stock Thisaction should be customized for each shop to contain the correct email
address and email body branding.

Condition: Are Products Back In Stock Condition
This condition checks if any products that customers are interested in have become back in
stock If atleast one product is back in stock, this condition will evaluate astrue.

Condition: Has List Of Visitor NotificationsExpired Condition

This condition checks if the customer still has any valid ‘backin stock notification requests. If
at leastone ‘back in stock notification request exists that has not expired, this condition will
evaluate to false.

All of these conditionsand actionsrely onthe InventoryAutomationProvider to access
automation state data and perform notification comparisons. So, customizing the conditionsand
actions directly should not be necessary. Instead, the InventoryAutomationProvider should be
updated to extend any functionality needed in thisautomation plan.

Extending the InventoryProduct Entity

The InventoryProduct isused touniquelyidentify a product/stock informationinthe ECS. Ifthe
default InventoryProduct isnot sufficientto identify stock information, you will need to extend this
entity, as well as a few provider classes in the inventory system, using the following steps:

1.

2.

©No O

224

Create an EcsInventoryProduct class thatderives from InventoryProduct that
containsthe information required to identify stock information in your ECS

Create an EcsCommerceContext thatderives from CommerceContextBase thatexposes
properties that represent the additionalinformation required to identify stock information in
your ECS. It will be the responsibility of the client site / application to setthese properties
based on client state.

Create an EcsInventoryProductBuilder class thatderivesfrom
InventoryProductBuilder, and override all methodsof the base class to properly handle
your EcsInventoryProduct. In particular, you will needto use the new
EcsCommerceContext inside CreateInventoryProduct() topopulatethe additional
properties of you EcsInventoryProduct. Forexample:

var ecsProductInfo = ((EcsCommerceContext)this.CommerceContext) .EcsProductInfo;

Create an EcsInventoryAutomationProvider class thatderivesfrom
InventoryAutomationProvider, and override the GetProductNotifications,
GetExpiredNotifications, and GetProductsBackInStock methods. These methods
will need toreturn an EcsInventoryProduct forthe
StockNotificationRequest.Product property. Automation state datainthe inventory
system isstored as JSON serialized strings, so thiswill usually require some custom
deserialization code.

Register your EcsInventoryProduct entity at sitecore/commerce.Entities/InventoryProduct
Register your EcsCommmerceContext at sitecore/commerceContext

Register your EcsInventoryProductBuilder at sitecore/inventoryProductBuilder
Register your EcsInventoryAutomationProvider at
sitecore/inventoryAutomationProvider

Customers and Users

What isthe difference between a User and a Customer

Both of these entitiesare consumers of your ECS webshop. The User (CommerceUser) accountis
primarily forauthentication purposes and exposing the user to DMS. The customer

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 21 of 59

Sitecore Conmrerce Connect

(CommerceCustomer) accountis for representing the customer inthe ECS who will receive and pay
for the submitted orders. In simple B2C scenarios the CommerceUser andthe CommerceCustomer
represent two aspects of the customer, where in B2B scenarios the CommerceUser represents the
person acting on behalf of the customer, which typically represents an organization orcompany.

There isa many-to-many relationship between customers and users and there could be customers
without users (anonymous checkout, without registration for example), but normally users would not
be without customers.

Different ways to work with an ECS
There are multiple scenariosto use Connect to work with an ECS for customers and users.
Some usage examples ofthe domain model are:

e Topass customer and user information between the external commerce system and Sitecore

e Toset and/orget customer information during checkout

e Toregister accounts for new users

e Toauthenticate, e.g. login orlogout registered users

e Toenterauser intoan EA planwhen creating a user accountand trigger goalswhen loggingin

You can read more aboutthe domain model forcustomers and users in the Connect Developer
Guide.

Configuration

All configuration forthe customer subsystem can be found inthe
Sitecore.Commerce.Customers.config file. Here you will find all detailsforthe entities, pipelines, and
repositories used by the customer and user system.

Entities

The default customer entitiesfor Commerce Connect only assume some of the basic customer and
user information that will be used across all commerce systems, itis expected thatyou will need to
extend these entities.

There are five (5) entitiesdefined in the Connect system for customers and users, all of which you
may choose to extend to suite your needs.
CommerceCustomer

The concept of a customer is determined by the integrated commerce system and the e-shop
solution. In B2C solutions, the customer typically represents a person whereas in B2B scenarios a
customer typically represents a company.

The CommerceCustomer entity will always be extended to include custom information particularto
the ECS.

CommerceUser

The commerceUser classis responsible for representing a user account. A user resembles a visitor
of awebshop (website) who has identified him-orherself explicitly by creating a login account by
which the person can be (re-)authorized.

The CommerceUser entity can be extended to include custom information particularto the ECS, but
the defaultimplementation willwork if users are stored in Sitecore only for authentication purposes.

CustomerParty

CustomerParty is used to represent the type and 0-to-many relationship between the customer and
a list of parties, where parties are of type Party.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 22 of 59

Sitecore Conmrerce Connect

CustomerPartyType

CommercePartyType is used to indicate the type of relationship between the customer and party.
The class is introduced as an extensible enum. In order to extend and customize the
CustomerPartyTypes options. Connect hastwo different party types, AccountingParty and
BuyerParty.

Party

Party is a shared entity between carts service layer and customer and users service layer. This entity
stores party information forexample: address information.

When you need to extend any of these default entitiesyou can achieve thisby creating a new class
thatinherits from the appropriate type, and then patching the appropriate entity under

<commerce.Entities> inthe Sitecore.Commerce.Customers.config file.

You can read more aboutindividual entitiesin the Developer Guide.

Pipelines
There are numerous pipelinesfor Customers and Users allow most basic functionality.
Some example of the pipelinesallow for:

e Creation of Customer and Users via CreateCustomer and CreateUser.

e Updating of Customers and Users via UpdateCustomer and UpdateUser.

e DeletionsviaDeleteCustomer and DeleteUser.

e Associating Customer to Users via AddCustomers and AddUsers.

e Adding of party information via AddParties.

You can read more aboutthe customer and user pipelinesin the Developer Guide.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 23 of 59

Sitecore Conmrerce Connect

Product Synchronization

Sitecore Connect containsa service layerfor synchronizing product data between Sitecore and one
or more external commerce systems.

Having access to product data is essential for any shop, but using the product synchronization layeris
optional with Connect. By design, the service layers work independently and all the other service
layers only care about a product ID, which is typically provided in parameters.

Note

For more information about benefitsand drawbacks for using product synchronization compared to
other approacheslike use of data providers, see the Connect Overview document.

Note
For a description of the service layer methods, pipelinesand domain objects, see the Sitecore
Commerce Connect Developer Guide

The following sectionsdescribe:

1. The basics of product synchronization
2. The Connect product data model

3. Theitem data structure

4. The objectdomain model

5. A numberof examplesof how to implement and customize the default
implementation

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 24 of 59

Sitecore Conmrerce Connect

3.1 The basics of product synchronization

There are a couple of different ways to synchronize one or more products ranging from explicit to
implicit specification of the products to synchronize:

e Synchronize All Products
The service method SynchronizeProducts synchronizes all products and related product
repositories (a.k.a. artifacts), that needs to be synchronized. A part of the logic, retrieves alist
of updated products from the external commerce system and alist from Sitecore and
compares them to implicitly determine which productsto synchronize and which to delete.
After determining which productsto synchronize, due to being newly added, updated or
deleted, the next method SynchronizeProductListis called, specifying the list of products to
synchronize.
Before calling Synchronize Product List, all the related product repositories are synchronized.

e Synchronize Product List
The service method SynchronizeProductList accepts a list of product IDs which ititerates over
and calls the Synchronize Product method.
No related product repositories are synchronized as part of this, but are assumed to be up -2-
date.

e Synchronize Product
The service method SynchronizeProduct accepts a single product ID for which the datais
synchronized.
No related product repositories are synchronized as part of this, but are assumed to be up-2-
date.

e Synchronize Artifacts
The related product repositories like Manufacturers, Product Types, Classifications
(categories) and global specificationsare referred to as product artifacts.
The service method SynchronizeArtifactswill synchronize all the repositories separately.

While synchronizing all or a list of products, a number of Sitecore Disablers are temporarily activated
to speed up performance, like EventDisabler, SecurityDisableretc.

Note
The item IDs generated in Sitecore, for the product data in the external system, are based on a direct

mapping of external IDs to Sitecore Item IDs. That means the same specificitem ID is always
generated for a specific external ID. The implication is, that product data can be synchronized, even if
the related product repositories are not up to date. When the related product data is synchronized the
connection is automatically established because the Sitecore item IDwas already known and
configured. For more information see section

3.1.1 2-waysynchronization

The synchronization provided with Connect is designed to work in both directions. However, the most
common scenario isto synchronize only one way, from the external commerce system to Sitecore
content.

The logicthat determineswhether an entity isupdated in the ECS, CMS, or both isbased on a
Direction parameterand the configured strategy. Each synchronization method takes an optional
Direction parameter. If not provided the default direction value isDirection.Inbound, which meansthe
product datais taken from the ECS and imported into CMS. The possible Direction values are:

e Direction.Inbound, e.g. one-way synchronization from ECS to CMS. Thisis the default value.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 25 of 59

Sitecore Conmrerce Connect

e Direction.Outbound, e.g. one-way synchronization from CMS->ECS.
e Direction.Both, e.g. 2-way synchronization based on the configured synchronization strategy

The default synchronization strategy is based on timestamps for when the entity was last updated and
the last one (newest date and time) wins, meaning if the entity was last updated in the external
system, thenitgets overwritten in Sitecore and vice versa. Only when specifying 2 -way synchronize
with Direction.Both will the synchronization strategy be evaluated to determine which way data flows.
The strategy is executed per product and all its constituent entities. For more information on
customizing the synchronization strategy, see section 3.7 How to Create a Custom Synchronization
Strategy

3.1.2 Pipeline pattern

Each type of item that makes of the product domain model ismanaged individually by following the
divide and conquer strategy. As with all otherservice layers in Connect, the logicisimplemented
using pipelines. It meansthat there are one or more pipelinesassociated with every product entityin
the model, where the entity can be product, manufacturer, division, classification etc.

Connect uses a pattern similarto the Bridge Design Pattern for the processors inthe pipelinesfor
each type of entity. The product domain model serves asthe data abstraction that hides its
implementation in the ECS as well as in Sitecore. Each entity is read from both the ECS and Sitecore.

A comparison of the values between identical instancesis executed and the result is written back to
both the ECS and Sitecore. This meansthateach pipeline hasthe same pattern of processors for
each entity, where the entity can be product, manufacturer, division, or classification.

The two-way synchronization takes place in the following order:

1. The entity is read from the ECS.
Naming convention: “Read[TypeOfEntity]FromSC”

2. The entity is read entity from the CMS.
Naming convention: “Read[TypeOfEntity]FromECS”

3. The entities are compared and the differences are resolved.
Naming convention: “Resolve[TypeOfEntity]Changes’

4. The results are written to the ECS.
Naming convention: “Save[TypeOfEntity]FromECS”

5. The results are written to the CMS.
Naming convention: “Save[T 7ypeOfEntity]FromSC”

When implementing integration with an external system, itis processors number1 and 4, which are
relevantto implement. The otherscome with Connect. There needs to be a custom version of
processor number 3, but a base processor is provided which provides most of the logic needed.

Depending on the value of the Direction parameter, some of the previously listed processors skip
execution. For example, if the Direction parameteris set to inbound (ECS->CMS), there isno need to
read the entity from CMS or write it back to the ECS.

The following snippet shows the default configuration for synchronizing the main productitem (a.ka.
ProductEntity). The basic pattern handles the cases of creating and updating. For product, an
additional processor isinjected to delete a productifit no longerexists in the external commerce
system and must be removed from content.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this docurent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 26 of 59

Sitecore Commerce Connect

<commerce.synchronizeProducts.synchronizeProductEntity>
<processor
type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.ReadProductFromSitecore,
Sitecore.Commerce">
<param desc="productRepository" ref="productRepository" />
</processor>
<processor
type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.ReadExternalCommerceSystem
Product, Sitecore.Commerce" />
<processor
type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.ResolveProductChanges,
Sitecore.Commerce">
<param desc="synchronizationStrategy" ref="synchronizationStrategy" />
</processor>
<processor
type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.DeleteProductFromSitecore,
Sitecore.Commerce">
<param desc="productRepository" ref="productRepository" />
<param ref="entityFactory" />
</processor>
<processor
type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.SaveProductToExternalComme
rceSystem, Sitecore.Commerce" />
<processor
type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.SaveProductToSitecore,
Sitecore.Commerce" >
<param desc="productRepository" ref="productRepository" />
<param ref="entityFactory" />
</processor>
</commerce.synchronizeProducts.synchronizeProductEntity>

Figure 1 illustrates how the main pipeline SynchronizeProductsare executing otherpipelines
internally to do a full synchronization.

M p— —

seivpe ik aioa i oo guzhoad et by pisat e e Liapan | [rikies oTqertye i ey

Figure 1: Call hierarchy between pipelines

Sitecore® is a registered trademerk. All other brand and product nanes are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 27 of 59

Sitecore Conmrerce Connect

Pipelines and naming convention
Pipelinesare generally splitinto two types:

o Pipelinesthat operate on related product repositories, separate from the actual product
repository.
These separate repositories are used as references from the product repository. There are
repositories for Manufacturers, Classifications, Types, Divisions, Resources and specifications.
The pipeline namesare prefixed with “Synchronize”. An example is SynchronizeManufacturers,
which isresponsible for synchronizing all manufacturers.

o Pipelinesthat operate onindividual productsand synchronize references from productsto the
separate repositories.
The pipeline namesare prefixed with “SynchronizeProduct”, having the word product added to
signal that they are dealing with individual productsas opposed to entire repositories. An example
is SynchronizeProductManufacturers, which is responsible for synchronizing the
connections/references between a specific product and its related manufacturers stored in the
separate Manufacturers repository.

Processors thatbeginswith the word Run are responsible for calling a separate pipelineand transfer the
needed parameters. An example isRunSynchronizeManufacturers, which executesthe
SynchronizeManufacturers pipeline.

3.1.3 Integrating with Connect
Integrating products with Sitecore Commerce Connect via product synchronization requires:

Potentially customizing the product domain model, although the default model will cove rmost scenarios
and carry the needed information for presentation purposes. For more information on customizing the
domain model, see section 3.4, The Object Domain Model

The object diagram below visualizesthe object domain model. For more information, see the Sitecore
Commerce Connect Developer Guide.

There isa one to one correspondence between the product item templatesand the objects.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Sitecore Commerce Connect

@ sitecore

| Productentity ol | ProductVariantSpecifications A
Absiract Ciss -) K VariantSpecifications | class
elationType |
“» MappedEn
Mappedntiy - r
H Properties 7| K RelationTypes
£ Crested = DS [
F Sitecoreltemid # Name
F Updated
| Resource R
Coss —_—
FRelations y ClassificationGroup A
—_— P RS Class
 Properties Relation A & Product | Product A ,
Class I — »
8inaryDat: ¥ ClassificationGroups | @
: inaryoeta ¥ ReferredProduct 7 Properties
. mlmﬂype | > B Properties & Description
ame
F ResourceType & FuliDescriptien & Neme
=) ¥ Identification
& Neme JF Classifications
& ShortDescription P
| Classification #
F Resources Class
| ProductResource ~ s
Coss
& Description
& Properties & ExternalParentld
& Name
& Medialtemld :
& Name
& Type —_—
* e ProductSpecifications A
uri e
?
= Properties
& GroupName
[Division A F DefeultValiss g specifications
P J Divisions e)
T fe< GlobalSpecifications &
K Specifications Class.
= Properties F ProductSpecifications { 7
& Description
& Name
\), ¥ Specifications
K SubDivisions) v .
| Specification A
[Manufacturer A &= ¥ Specifications |
o B ——
E properties GlobalSpecification A
Ciss
 Properties # Manufacturers & Group » | # spefications
& Description F Key B properties F
& Neme 5 Value rET
ame
& WebSiteUrl
¥ ProductTypes =tTypes 1
ProductType A
= S Options
& Properties | GlobalSpecificationOption &
Ciss
& Description
Hame = Properties
& PareniProductTypeld
£ ProductTypeld K ExtemnalSpecificationld
- £ Name

How to Implement a Custom Product Entity. The domain model consists of a list of Sitecore product
template and corresponding object types.

1. Creating a custom processor for each pipeline thatreadsdata externally and stores itin an
instance of the corresponding domain model object type, forwhich the pipeline isresponsible.
2. If the synchronization needs to go both ways, two additional processor must be create d for each
pipeline
o A processor which stores the product data externally. The product data will be givenina
an instance of the corresponding domain model object type, forwhich the pipelineis
responsible
o A processor, which resolves the differences and determinesthe resulting output. For
more information, see section 3.7 How to Create a Custom Synchronization Strategy.

Note

When reading data in the external system and populating an instance of a domain model entity (step #2),
it's important to provide unique namesfor entitiesof the same type so that itwill result in unique item
namesin Sitecore. If not, it cannot be guaranteed that the items can be accessed. An exampleis

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 29 of 59

Sitecore Commerce C onnect @ sitecore

resources, where two imageswith identical namesforthe same produ ct, will result in only one of them
being shown on the website, because Sitecore always picks the first item with a given name

3.14 Repository design pattern

Each Connect processor thatwrites data to Sitecore contentis based onthe Repository design pattern
and has an associated configuration entry in the Sitecore.Commerce.Products.config file.

In the following snippet, the default configuration forthe ManufacturerRepositoryis displayed.

<manufacturerRepository type="Sitecore.Commerce.Data.Products.ManufacturerRepository,
Sitecore.Commerce" singleInstance="true">
<path ref="paths/manufacturers" />
<template>{8ECDCOA6-3A85-4F89-8F49-8A53AA75595E}</template>
<prefix>Manufacturer </prefix>
</manufacturerRepository>

All repository configuration have the following in common

e A name and a type attribute that refers to the implementation. The name isthe element name and
the naming scheme is: [entity name in singular] + “Repository”, like “manufacturerRepository”.

e A <path>parameterelementwhich refers to the main <paths> element, to specify where the root
of the repository islocated.

e A <template>parameterelementthat containsthe ID of the template that the repository operates
on. The template isused when creating new instances of the given item type.

o A <prefix>parameter element containing an arbitrary but fixed prefix, which is used as inputto
the IDGenerator along with external ID, to ensure the outcome isa unique GUID ID, which can be
used as a unique item ID. For more information see section 3.8 How to Implementa Custom ID
Generator.

There isa special kind of repository types, whose names start with “product”, that doesn’t actually store
datain a separate repository, butaugmentthe main product entity with references to the separate
repositories. An example is productManufacturerRepository that has the responsibility of managing the
references between the productitem and the related manufactureritems. The configuration for
productManufacturerRepository is shown below.

Instead of atemplate and path element, it hasa couple of <param> elements, specifying the name of the
field on the productitem that holds the references (e.g. item IDs) to the related manufacturers. As these
types of repositories needsto generate the rightitem IDs, they need to know the same prefix as was used
in the configuration forthe <manufacturerRepository>.

<productManufacturerRepository
type="Sitecore.Commerce.Data.Products.ProductFieldRepository, Sitecore.Commerce"
singleInstance="true">
<param desc="productFieldName">Manufacturer</param>
<param desc="productPrefix">Product </param>
<path ref="paths/manufacturers" />
<prefix>Manufacturer </prefix>
</productManufacturerRepository>

Note
Apart from being used in the pipelinesto store entitiesin Sitecore, the repositories can be used to obtain
an objectinstance of the given type by providing an ID.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 30 of 59

Sitecore Commerce C onnect @ sitecore

All repositories provides a method thattakes an ID asinputand returns an instance of the given entity
type:
public virtual TEntity Get(string entityKey)

Retrieving a specific product looks like this:

var product = this.productRepository.Get("external id");

3.1.5 IDMapping

By design, the remote product repository is always regarded as the main repository, which by default
owns the products. That makes the ID of the products and artifacts in the external system the primary
key.

In Sitecore, the IDs of the corresponding items for products and artifacts are generated by Connect
instead of relying on the default Sitecore implementation that automatically generatesa new GUID for
each new item created.

By using a hash algorithm, itispossible to generate a direct mapping between the IDs coming from the
external system and the item IDs in Sitecore. It has the following benefits:

¢ No need for mapping tablestaking up space.
e |t becomesvery fast to getthe ID of the corresponding item.
e Thereisno need for searching for the itemsin Sitecore if the external ID is provided.

The defaultimplementation isbased on the MD5 hash algorithm and has the following format:

Item.ID = MD5.ComputeHash (Prefix + ExternallD) ;

For more information on creating a custom ID mapping implementation, see se ction 3.8 How to
Implement a Custom ID Generator

3.16 Indexing

When Connect isinstalled the defaultindexispatched to exclude all product data and a separate product
indexis created, which contains extended product data.

While synchronizing all products or a list of products, the indexing isstopped. After synchronization
finishesthe indexesare rebuilt. Thisis done for performance reasons. The configuration snippet below
shows the default configuration of the SynchronizeProductList pipeline containing the processors related
to indexing.

<commerce.synchronizeProducts.synchronizeProductList>
<processor
type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductList.PauseSearchIndexing,
Sitecore.Commerce" />
<processor
type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductList.SynchronizeProductlList,
Sitecore.Commerce" />
<processor
type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductList.ResumeSearchIndexing,
Sitecore.Commerce" />
<processor
type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductList.RebuildSearchIndexes,
Sitecore.Commerce" />
</commerce.synchronizeProducts.synchronizeProductList>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 31 of 59

Sitecore Commerce C onnect @ sitecore

In the Sitecore.Commerce.Products.Config file, the setting ProductSynchronization.Productindexes
contains a comma separated list of index namesthat are stopped and re-started during product
synchronization
<!-- PRODUCT INDEXES.
The indexes used to store synchronized products.
Can be stopped, resumed and rebuild automatically during product synchronization.
-->
<setting name="ProductSynchronization.ProductIndexes" value="sitecore_master_index,
commerce_products_master_index" />

Note
If additionalindexesare created, the setting should be updated to include the name of the indexes. If not,

indexing will continue during synchronization resulting in performance degradation

Note
If new or custom product templatesare introduced, both the DefaultindexConfiguration and the Product

index configurationsmust be updated. For more information, see the following sections.

The default index

By design, the default master and web indexes are configured, notto include the itemsstored in the
product repositories.. The defaultindex configurationispatched with an Exclude section with an entry for
each product template:

<exclude hint="list:ExcludeTemplate">
<ProductRepositoryTemplateId>{F599BF48-D6FE-40DC-9F78-
CF2D56BFB657}</ProductRepositoryTemplateId>
<ProductTemplateId>{47D1A39E-3B4B-4428-A9F8-B446256C9581}</ProductTemplatelId>

</exclude>

For the full configuration see the configuration file
“Sitecore.Commerce.Products.Lucene.DefaultindexConfiguration.config*

The product index

Connect comes with its own product index forboth the master and the web database. The index serves
several purposes:

e To separate contentfrom dataintwo separate indexes

The productindexis used, when searching the product repository bucket from within the Content

Editor. Thisis achieved by patching the getContextindex pipeline:

<contentSearch.getContextIndex>
<processor type="Sitecore.Commerce.Pipelines.ContentIndex.CustomIndex.FetchCustomIndex,
Sitecore.Commerce"
patch:before="processor[@type="'Sitecore.ContentSearch.Pipelines.GetContextIndex.FetchIndex
, Sitecore.ContentSearch']"/>

</contentSearch.getContextIndex>

e Toinclude extended product data.
A pipeline “commerce.inventory. stockStatusForIndexing” reads inventory data per product
from the external commerce system and populatesthe index. Computed fieldsare used to
include the inventory data. The configuration can be foundin file
Sitecore.Commerce.Products.Lucene.Index.Common.config.

The table below provides an example of the product index extended with four fields:

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 32 of 59

Sitecore Commerce C onnect @ sitecore

1. In-Stock
Contains a list of locationswhere the product isin stock
2. Out-Of-Stock
Contains a list of locationswhere the product is out of stock
3. Location
Contains a list of locationswhere the product is orderable from
4. Pre-Orderable
Contains a Boolean value indicating whetherthe productis pre-orderable or not

Product ID Size Color In-Stock Out-Of-Stock Location Pre-orderable
(notvariant)
Awl23-04 SM L XL R, B, G, O Central Store, Stored Central Yes
Storel, Store2 Store 1,
Store 2,
Store 3

The productindexis defined in the file “Sitecore.Commerce.Products.Lucene.Index.Master.config”. A
similarconfiguration file isdefined forthe Web index.

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">
<sitecore>
<contentSearch>
<configuration type="Sitecore.ContentSearch.ContentSearchConfiguration,
Sitecore.ContentSearch">
<indexes hint="list:AddIndex">
<index id="commerce products master index"

type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex, Sitecore.ContentSearch.LuceneProvider">

<param desc="name">$ (id)</param>

<param desc="folder">$ (id)</param>

<!-- This initializes index property store. Id has to be set to the index id
-—>

<param desc="propertyStore" ref="contentSearch/databasePropertyStore"
paraml="$ (id)" />

<configuration
ref="contentSearch/indexConfigurations/defaultLuceneIndexConfiguration"/>

<strategies hint="1list:AddStrategy">

<!-- NOTE: order of these is controls the execution order -->
<strategy ref="contentSearch/indexUpdateStrategies/syncMaster" />
</strategies>

<commitPolicyExecutor type="Sitecore.ContentSearch.CommitPolicyExecutor,
Sitecore.ContentSearch">
<policies hint="list:AddCommitPolicy">
<policy type="Sitecore.ContentSearch.TimeIntervalCommitPolicy,
Sitecore.ContentSearch" />
</policies>
</commitPolicyExecutor>
<locations hint="list:AddCrawler">
<crawler type="Sitecore.Commerce.Search.ProductItemCrawler,
Sitecore.Commerce">
<Database>master</Database>
<Root>/sitecore/content/Product Repository</Root>
</crawler>
</locations>
</index>
</indexes>
</configuration>
</contentSearch>
</sitecore>
</configuration>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 33 of 59

Sitecore Commerce C onnect @ sitecore

Note
It isassumed thatthe productrepository islocated underthe path “/sitecore/content/Product Repository”.

If thisis not the case, the <Root> element forthe crawler must be updated to reflect the actual location

A custom crawler isused for the product indexto include the itemsbased on the product templates
defined in the <includeTemplates> section of the configuration file “Sitecore.Commerce.Products.config”.
The list of product templatesdefined in thissection is an exact match of the exclude templatessection for
the DefaultindexConfiguration. If a custom product template isintroduced, then the index configuration
must be updated.

<includeTemplates>
<ProductRepositoryTemplateId>{F599BF48-D6FE-40DC-9F78-
CF2D56BFB657}</ProductRepositoryTemplateId>
<ProductTemplateId>{47D1A39E-3B4B-4428-A9F8-B446256C9581}</ProductTemplateId>

</includeTemplates>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 34 of 59

Sitecore Commerce Connect @ Sltecore

3.2 The Connect product data model

The rationale behind the architecture of the Connect product data model are:

e Tohave aproduct data model that fulfillsthe identified end -user scenarios.
e Tohave asingle common product data model no matterwhich ECS isintegrated with.

o For solution developersit will be the same model across different solutions.

o For Ul componentsdevelopers, the componentswill be easier to build and maintain if the
data model remainsthe same across external commerce systems

Product dataiscomplex and it's important to realize that in Connect there is not a one-2-one mapping
between a product and a single item in Sitecore - in the same way that product data in the ECS is not
stored in a single SQL table.

Note
Data for a single product consists of multiple Sitecore items. In order notto confuse matters with CMS
items, they are referred to as Entitiesin thisdocumentand in Connect.

In Connect, a product data model isdefined, so thatit's possible to:
= Provide a solid base for typical must-have e-com scenarios.

The main reason for pulling in product data in to Sitecore isto augmentitand present iton
different shops and channels, e.g. media, web, mobile, print

The product data must be normalized in orderto form a good and strong foundation for building
upon and to fulfill the scenarios

Data for a productis stored as a composite structure. There isa main contentitem based on a
template Product representing a product with only the shared genericfieldslike ID, Name,
Description, Type etc. Belowthe product item is sub-tree structure with specifications, relations
and resources. Inaddition, there are several related repositories thata product links to, like
Manufacturer, product type etc.

= Avoid redundant product data

The more redundant data, the more data needs to be synchronized, updated manuallyin SCand
maintained

If all data fora single product were forced to be stored in one Sitecore item, there would be alot
of redundant data stored amongst all the productitems, which means far too much data isbeing
stored and itbecomes a nightmare to maintain in Sitecore.

Instead separate repositories are used for shared data like manufacturerinformation, divisions
and specification valuesand referred to by way of linking. It's similarto the way normalized
product data would be stored in separate tablesin a SQL databases and references with foreign
keys.

= Minimize product data to synchronize

By avoiding redundant data, the amount of data to synchronize will be minimized

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 35 of 59

Sitecore Commerce Connect @ Sltecore

Also, notall product data is needed from the ECS. Only product data needed to fulfill the
scenarios described in the following sectionsshould be synchronized and stored in Sitecore.

= Avoid most typical custom model implementation problems

By splitting product data into a composite product structure and place data into separate
repositories the most typical implementation problemscan be avoided:

 Flatmodel

In aflat model a single item represents a product. Without composition of multiple items
to make up product data, the model is forced to:

= Be simple, missing outon alot of the needed information

= Have a lotoftypically unused fieldsor use a large number of templatesto cover
all the different product types. Both is not best-practice.

= Have a lotof redundant data for similar products or variants

= Forcing datainto custom field types or encoding data using some custom
scheme

« Redundantdata

Without separate repositories for storing shared information, redundantinformation willis
unavoidable.

« Templatesoverload.

Using a separate template foreach product type soon becomes a problem with a large
number of different products

« Difficultto extend

With a single item for a product and without composition of multipleitemsto make up
product data, it becomes difficult to extend with custom data.

+ Content Editing of redundant datais a real hassle

= Take advantage of CMS 7 features

By leveraging the newfeatures in CMS 7, it's possible to use buckets and features like Ling
based searches against custom product indexes, returning product objects through the new
Hydration model. The Hydration model is similarto NHydrate and Nhibernate. For more
information, see the Data Definition API Cookbook for Sitecore 7

= Enable e-com vendors to easily map product data

Instead of forcing product data into a single item in an artificial construct, the datais stored ina
more natural way with a composite structure thatwill make it easier for ECS to integrate with,
customize and extend.

3.21 Minimum product concepts

The following listsrepresent the minimum product concepts that need to be part of the product data
model.

1. Mainproductdata like IDs - EAN, SKU, IBSN etc -, name, Brand, Model, tags etc.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 36 of 59

Sitecore Commerce C onnect @ sitecore

2. Multiple classification schemesaka multiple different categorization schemes
a. Typically productsare stored in categoriesin the e-commerce system according to type.
b. For presentation, a different way of organizing products into categoriesis typically used.
3. Specificationsand lookup values

a. Specifications, lookup and default values
are on three levels:

= SCDntent
.) . H) Home
i. Categories. A category is - _

. . = (@ Product Repository
associated with a number of 2 §)onisons
specificationsthat goes for all) shop 1
products in the same category. [E] Shop 2
The specificationsare the same =) Lookups
regard|ess of the prOdUCtS and =) Global Product Specification Lookups
theirmanufacturer. 3 [cPuType

+ |j Hard drive
ii. Product type. Specificationsthat 2 [Memory
are specific to the given product # 2 sereensize
type. These specifications are # [dentification
more closely related to the actual = (2 Product Relation Type

. X _
product and its manufacturer.) Accessaries

|j Cross-sell
iii. Single product. Specificationsthat Ei fE'f‘"E‘ﬂ products
only appliesto the specific Qﬁ Variants
ro d uct. + Resource Types
P = Lj Manufacturers
4. Product variant significant specifications (=) asus
|j BlackBerry
a. It must be possible to configure which [£) canen
specificationsthat makes up the EE:
difference between all variants of a = {J Product Classifications
product, e.g. what specificationsmake up # [Commerce Categories
the variants. = (J Product Types
+ |j Apparel & Shoes
5. Related products [5) Backs
. . E |j Computers
a. There are differenttypes of relations 2] Digital downloads
between products: 1 [2) Electranics
i. Variants of the same product (2 Gift Cards
ii. Accessories [2) ewelry
iii. Crosssell, up-sell etc 5 T Products

6. Resources

a. imagesand files
7. Manufacturers

a. Manufacturerinformation
8. Divisions

a. Divisionsisa way to model an organization of divisionsinto a hierarchical structure,
which are used to tag products, so that are marked part of those division.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 37 of 59

Sitecore Commerce Connect @ Sltecore

3.3 Item templates and structure

The following sectionsdescribe the templatesmaking up the Connect product data model and the
structure in which they are being used.

3.3.1 Item Templates usedin the Product Data Model

In naming the templatesforthe product data model we have used the convention described in the
following section

Rule of Thumb and Naming Conventions

For each conceptin the model, product, specification, type etc. there’s an entity template and a typically a
corresponding folder template, e.g. each type of entity is kept in a folder. The naming convention isthat
the foldertemplate name isin plural and the entity template name isin singular form. Example:
Specification represents a specification entity and Specificationsrepresent the folderin which the
specificationsare stored.

The product data model consists of data that are stored in separate repositories and data thatis specific
for a given product. For settings that relatesto the specific product, the corresponding temp late nameis
prefixed with the word “Product”, for example the generic specification template iscalled specification,
whereas the product specific specification template iscalled ProductSpecification

Iltem templates

The item templatesused in the product data model are displayed on the following screenshot.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 38 of 59

Sitecore Commerce Connect @ sitecore

= E Templates

i Branches

= 1{:] CommerceConnect

= | Products

E Division
E—J Divisions
E—J Identification Type
E—J Identification Types
E] Lookup valus
E] Lookup values
E] Manufacturer
E] Manufacturers
E Product
E Product Classification
El Product ClassificationGroup
E] product Classifications
E] product Classifications Spedification
E] product Global Specification
E] product Relation
E] product Relations
EI Product Repository
E] product Resource
E Product Resources
E Product Specification
El Product Spedifications
E—J Product Type
E—J Product Type Specification
El Product Types
E] products
E] resource Folder
E] spedification
E Spedification Lookup
E Specification Lookups
E Synchronization

HOEHBEBEEEBEEBBBEEBEEBBBEBBEFBBB

[+

For every entity type, there’s usually a foldertemplate that holdsthe individual items. The following table
describes the individual entity templatesand list the corresponding foldertemplate.

Entity template name Folder template name Description

Division Divisions A division represents a business unitandis used
to tag products and thereby marking them part of
the division. Filtering products by division will
return the products that are associated with the
division.

Divisions are stored in an individual repositoryin

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 39 of 59

Sitecore Commerce Connect

@ sitecore

Identification Type Identification Types

Lookup Value Lookup Values

Manufacturer Manufacturers

Product Product Repository

Product Artifacts

Product Classification Product Classifications

Group

a hierarchical manner. A division can have
multiple sub-divisions.

The Template Divisionsis used as repository
folderfor the hierarchy of divisionsstored within.

Multiple identifierscan be associated with any
given product.

Identification Type isan enumeration of different
types of identification encodingschemes, e.g. a
product has both an EAN and SKU number
besides the internally used product code.

Identification Typesis used as repository folder
for the identification typesstored within.

A Lookup Value represents a key and value pair
with the item name being the key and value
stored in both short and long description. Each
set of lookup values are stored inits own Lookup
Values folder. Examplesare Product Relation
Types and Resource Types.

Lookup Valuesisthe foldertemplate forlookup
values and ithas a single description field

The Manufacturertemplate isused to store the
most essential information about a manufacturer,
e.g. Name, description, website URL and
Product URL macro.

The template Manufacturersisused as a
repository foldercontaining the manufacturers.
The folderis configured as a bucket

A productitem represents the core data ofa
product and a point of reference to all related
repositories: Manufacturers, Divisions, Types,
Classifications

Products are stored in a bucket and consists of
multiple sub-items: Relations, Resources and
Specifications

Product Artifactsis the foldertemplate grouping
togethermiscellaneousrepositories relating to
products like Manufacturers, Classifications,
Divisions, Types and global lookup values

A product classification Group represent a
classification scheme. A lot of standards as well
as custom classification schemes exists in the
world today.

Multiple different classification schemes and
categorizationsmight be used concurrently in the

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 40 of 59

http://en.wikipedia.org/wiki/International_Article_Number_(EAN)
http://en.wikipedia.org/wiki/International_Article_Number_(EAN)

Sitecore Commerce Connect @ Sltecore

product data model, e.g. products could use both
the categorization used in the external
commerce system as well as UNSPSC
classification scheme. UNSPSC being The
United Nations Standard Products and Services
Code, which is a hierarchical convention thatis
used to classify all products and services.
Classifying products and services with a
common coding scheme facilitatescommerce
between buyers and sellers and is becoming
mandatory in the new era of electronic
commerce

A Product Classification Group containsa
hierarchical structure ofitems based on template
Product Classification.

Product Classification Groups are stored in a list
beneath aroot folderbased on template Product
Classifications.

Product Classification Product Classification A Product Classification represent a category
Group within one classification scheme (Product
Classification Group)

Multiple different classification schemes and
categorizationsmight be used concurrently in the
product data model. Forfurther information see
description for Product Classification Group.

Product Classifications are structured in a
hierarchical mannerbeneath a Product
Classification Group.

Product Relation Product Relations A Product Relation represents a relation
between the given product and other products in
the repository

Product Resource Product Resources A product resource represents a media entity,

e.g. a file (brochure), animage (Main image or
alternate images). Resources are notalways
stored in Sitecore Media Library and can be
represented by a URI.

Resources are stored inits own folderbased on
template Product Resources under the product
item

Product Specification Product Specifications A product specification holdsthe specification
key and value or a reference to a value when
based on afixed set key-value pairtable

Product Type Product Types Products are based on atype andinheritsall the
properties of the type. A product can only be of a
single type.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 41 of 59

http://www.unspsc.org/

Sitecore Commerce Connect @ Sltecore

Types are stored initsown folderbased on
template Product Typesorganizedin a
hierarchical structure.

Sub-types inherit propertiesof its ancestors.

A type can contain definitionsof Specifications,
SpecificationsDefault Valuesand Specification
Optionsto limit the set of values from fixed set
key-value pair tablesfor a given type.

Specification Lookup Specifications A Specification Lookup represents the key of a
specification associated with a category or
product type and the table of possible values.

Specification Specifications A Specification represents the key of a
specification associated with a category or
product type

Specificationsare stored in a Specifications
folder.

Specification Option Specification Options A Specification Optionisused to limitthe
possible valuesfor a given product type.
Specification Optionsare used in connection
with Specification Lookups.

Specifications Default Product Type A folderfor holding default valuesfor
Values specificationsrelated to a type. The folderhas
no fields.

Branch templates

The product data model consists of the branch templates described in the following table

Branch template name Description

Product The branch template containsa composite tree
structure that represents a product with default
subfolders for related products, resources and
specifications.

The template isassociated with the bucket that
makes up the main product repository.

Product Repository The branch installsthe complete product
repository including allthe repositoriesrelated to
products. Repositories like Divisions,
Manufacturers, Product Types, Classifications,
and lookups

The expanded branch templatesare displayed on the following screenshot.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 42 of 59

Sitecore Commerce Connect @ sitecore

= 3 sitecore
= a Content
) Home
:‘ Product Repository
u Promotion Texts
E Layout
| Media Library
2 System
Q Templates
= * Branches
= a CommerceConnect
%) Marketing Center
=) Products
= a Product

= a $name
a Relations

a Resources
a Specifications

0B ® B

= :‘ Product Repository
= :‘ $name
i) Divisions
u Lookups
u Manufacturers
.,LJ Product Classifications

.,LJ Product Types
'.?‘ Products

J_] System
.LJ User Defined

3.3.2 Main product datain one product repository bucket

In order to store a large number of products, in a single product repository, a bucket isused. One product
consists of a main productitem and a sub-tree of items containing valuesspecific to the given product
and references to other repositories.

Sitecore® is a registered trademerk. All other brand and product nanmes are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 43 of 59

Sitecore Commerce Connect @ sitecore

- o IEN

e84 760 P - € || EE] Product E-Comemeree, OBEC T... [P Byvejr Nykabing Sjeliand, Dar..| (B> Anshysis and Design - Al Docu| () shec.l

Product Synchronization

3, - [conen RN -8
= [stecore j ASUS Eee PC 1000HA 10-Inch Netbook A
5 & coment o
® € rome 0 ouick Info. *
= @ Produst Repustory s
% (J Diisions
2 Qom ExtornallD
@ L Manufacturers B
@ () Product Classificstions
@) Product Types) Ganeral product information
S W Products
gk Identification
= Wans
= Wor
=90
s W Mame:
=9 ASUS Eee PC 1000HA 10-Inch Netbook
®) Acer Aspira One 8.97 Mini-Notabook Case - (Black)
% (2] Adobe Photoshop Elements 7 Brandame:

® [2) APC Back-UPS RS B0DVA - UPS - 800 VA - UPS batte
B (2 Arrow Men's Wrinkie Free Pinpoint Solid Long Skeevi
= (1] ASUS Eee PC 1000HA 10-Inch Nethook

ModelName:
S (2 Relatons
(2] Retated products
= [Resources
) ssusseape- L]
S B speckictions Super Hybrid Engine offers a choice of performance and power consumption modes for easy adjustments according to various needs.
B crutyee
() screemsice Show EdRor - Suggest Fix - Edt Himl

@ (5] ASUS Ece PC 500HA B.9-Inch Nethook Black e e i

@ (2) Best Gelling Recipes
@ (2) Black & White Diamond Heart v

Much more compact than a standard-sized notebook and weighing just over 3 pounds, the Eee PC 1000HA is perfect for students toting ™
to school or road warriors packing away to Wi-Fi hotspots. The Eee PC 1000HA also features a 160 GB hard disk drive (HDD), 1 GB of
®] Blackberry B0d 9000 Phane, Black (ATAT) o RAM, 1.3-megapixel webcam integrated into the bezel above the LCD, 54g Wi-Fi networking (802.11b/g), Secure Digital memory card

The product template only containsthe most essential information that appliesto all products.

Product Variants

Generally avariantis considered a product in Connect, so there’s no distinction between a product and a
variant of a product. They are stored in the same way.

To save space and avoid duplicationof data, the concept of a product family can be used. In a product
family there is one master product, which has all the default product data stored. The related product
variants refer to the master product and only contains values that differ from the master product.

A Product type can be regarded as the master product as it can hold default specificationsetc. Product
variants must be assigned a producttype and only the specifications that differ, needsto be set for the
variant.

3.3.3 Productrelations, resources and specifications

Each product has a composite structure organizedin a sub-tree for storing relations, resources and
specificationsthat apply to the particular product; see screenshot.

Sitecore® is a registered trademerk. All other brand and product nanmes are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 44 of 59

Sitecore Commerce Connect @ sitecore

= j sitecore
= a Content

1) Home

=) Product Repository
= {J Divisions
[+ LJ Lookups
[+ L] Manufacturers
[+ {J Product Classifications

[+ LJ Product Types
[=l f" Products

= T 2014

= o7
2 @17
= Tz
= B3

:] Acer Aspire One 8.9" Mini-Motebook Case - (Black)
:l Adobe Photoshop Elements 7
j APC Back-UPS RS 800WA - UPS - 800 VA - UPS batt

B EEB®

:] Arrow Men's Wrinkle Free Pinpoint Solid Long Sleev

m

:l ASUS Eee PC 1000HA 10-Inch Netbook
= 3 Relations
:] Related products
= 3 Resources
:] asus-eee-pc-1000ha-10-inch-netbook
= 3 Specifications
() cPU Type
:] Screensize

:l ASUS Eee PC 900HA 8.9-Inch Netbook Black

(23]

:] Best Grilling Recipes
:l Black & White Diamond Heart
= Bold 9000 Phone, Black (AT&T

B BB
o)
o
[l
o
m
i)
=

3.34 Specifications

Specificationsfor products are stored in several different placesinthe product data model:

1. Global specifications
Specificationsthat are global across the entire product repository are stored in the global
specificationsfolderunder /Product Repository/Lookups/Global Product Specification Lookups
(relative to the product repository).
These specificationsare typically stored as lookup tables where a key and a set of pre -defined
values are defined.

Sitecore® is a registered trademerk. All other brand and product nanmes are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 45 of 59

Sitecore Commerce C onnect @ sitecore

2. Classification specifications
For each classification scheme there’s typically a list of specifications associated with each
category. These are the specificationsthat make it possible to compare all products present
within a category made by different manufacturers.
It's also the specificationsnormally used for navigated orfacetted search

3. Type specifications
There’s a close relationship between products and its type and hence there are 3 pieces of
specification information available on types:
a. Specificationsin form of keys or keys + values (lookup tables)
b. Specification optionsthat narrows down the lookup table optionsfor sub -types
c. Specification default valuesthat containsvalues for specification and all products of the
given type will have those values given

4. Product specifications
Specificationsthat are unique to specific products can be stored under the product itself. Typically
most specifications will be on the product type.

Specification

A specification represents an attribute belonging to a category or a type. A specification can be asingle
key or a key and a table with a set of fixed values.

For each specification there’s typically a specification value. The value isstored eitheron the type as
defaultvalue ordirectly on the productitself.

e Specificationscan be defined on a category, meaning all productswith the category assigned
have the specificationsand should have corresponding specification values stored. On the
screenshot belowthe specifications for a category /Electronics/Smartphone is shown with the
specificationsHeight, Network types, Operating System and Storage. 3 of which also represents
tables of fixed lookup values.

= {J Product Classifications - W”& \
=[] categories
|5 Appliances D Network types
= [5) Electronics
) cables @ Quick Info
= [5) smartphone
5 () Spedfications Item ID: {F89343E5-3296-4008-SDFE-8CO135F5E011}
[5] Height ItemMName: Metwork types
= 2] Network types Ttem Path: Jsitecore jcontent/Product Artifacts/Product Classifications/Categories/Electronics/Smartphone /Specifications/Network types
g :2 Template: [sitecore ftemplates/User Defined /OBEC/Product data model/Spedfication Lookup - {64EE9778-10D3-492A-A52E-D229CERBIFAD}
) evee Created From: [unknawr]
[5) errs Item Owner: sitecore\admin
=[] Operating system £] pata
B ios L
5] Windows 8 Name:
= IJ Storage Network types
[se8
[5) 16c8
[E) 3268
[s4c8
|j Tablet

e Specificationscan be defined on the type, meaning all productsof that type have the
specificationsas attributes and should have corresponding values stored.
On the screenshot belowthe specifications for type /Smartphone/iPhone isshown with the
specificationsColor and Product Version, both of which also represents tablesof fixed lookup
values.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 46 of 59

Sitecore Commerce Connect

@ sitecore

= [2] Product Types - [Gcmaent &
= [5] Smartphone
=] Fhone D Color
[2] iPhone 4
[iPhone 5 @ Quick Info
=] D Spedfications
= D Color Item ID: {C16120E8-8107-4245-8F8 1-EBBBOFF2C0FD}
2] Black ItemName: Color
Ij white Item Path: [sitecore fcontent/Product Artifacts/Product Types/Smartphone iPhone/Specifications /Calor
= Dgnduct versions Template: [sitecore ftemplates User Defined/OBEC/Product data model/Specification Lookup - {64EE9773-10D3-492A-A52E-D229CESBOFAD}
1
a 2 Created From: [unknown]
EE Item Owner: sitecore\admin
[EE E]pata
B4
lj 5 Name:
Color

£ D Spedifications default value

Specification values

Specification valuesrepresent values for a specification and can be stored in the following two places.

e Specification valueson product

Specificationsare stored beneath the productitem in a foldernamed Specifications. The folderis
the repository for key-value pairs based on template Product Specification

e Specificationson producttype

Specificationsare stored beneath a product type item in a folder named Specifications Default
Value. The folderisthe repository for key-value pairs based ontemplate Product Specification

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 47 of 59

Sitecore Commerce Connect @ sitecore

3.4 The Object Domain Model

The object diagram below visualizesthe object domain model. Formore information, see the Sitecore
Commerce Connect Developer Guide.

There isa one to one correspondence between the product item templatesand the objects.

! Productentity Al ProductVariantSpecifications A
Absract Ciss ! e F VariantSpecifications | ciass
fonType .
 MappedEnty i 7
 Properties F RelationTypes
£ Crested = Properties <
reat
F Sitecoreltemid # Name
F Updated
Resource #
= K Relations [ClassificationGroup A
 properties " Relation A & Product [Product A Choss .
Class Cisss »
BinaryData ¥ ClassificationGroups | =
: ety ¥ ReferredProduct 7 Properties
£ x.maype | B properties X Description
amme
5 ResourceType & FullDescription & Neme
¥ Identification
& Neme ¥ Classifications |/
& ShortDescription p
Classification #
F Resources Y/ Class
ProductResource] s
s .
& Description
= Properties & ExteralParentld
& Name
& Medialtemld
& Name
& Type p
% e ProductSpecifications
uri iy
= Properties
& GroupName
1 A # DefaultValues g specifications
== & Divisions
L ¥ Specifications
= Properties F ProductSpecifications r
& Description
& Name
F Specifications
K SubDivisions }) M
Specification A
(Manufacturer A &= ¥ Specifications |/
Class (.,
E properties GlobalSpecification A
Gz .
 Properties # Manufacturers & Group 7| # specfications
- s
& Description : 55‘" B properties
falue
Nome 5 MName
& WebSiteUrl
ProductTypes ctTypes '/
oy
ProductType A
= % Options \/
& Properties E— GlobalSpecificationOption ~ #
- Gz
& Description
: Damelpud tTypeld =i
arentProductTypel o
¥ ProductTypeld : :«IemalSpemllcalmnld
lame

Sitecore® is a registered trademerk. All other brand and product nanmes are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 48 of 59

Sitecore Commerce C onnect @ sitecore

3.5 How to Implement a Custom Product Entity

When deciding whetherto add afield to the main product template and corresponding objector add itto a
sub-item, you should ask the simple question:

Does the field applyto all productsor not?
If not, thenitdoesn’t belong on the product template and corresponding product class.

The following steps are needed in order to extend the main product entity. The same procedure must be
followed for other product entities.

e Create a custom template thatinheritsfrom the default Product template
(/sitecore/templates/CommerceConnect/Products/Product) and extends it with further fields

e Create a custom Product class, thatinheritsfrom the default
Sitecore.Commerce.Entities.Products.Product class and extendsitwith further properties

e Create a custom ProductRepository class, which inheritsfrom the default

Sitecore.Commerce.Data.Products.ProductRepository.
Override the following two methods to save and load the extended properties. Make sure to also

call the base implementation of these methods:
o protected override void UpdateEntityItem(Item entityItem, Product entity)
o protected override void PopulateEntity(Item entityItem, Product entity)
e Update the Sitecore.Commerce.Product.config file:
o Update the ProductRepository element:
= by replacing the value of the attribute type with the full type name of the custom
product repository class, see snippet belowwith type valueinitalic.
= by replacing the template ID set in the sub-element <template>. See snippet
belowwith template value initalic

<productRepository type="Sitecore.Commerce.Data.Products.ProductRepository,

Sitecore.Commerce"”" singlelInstance="true">
<template>{47D1IA39E-3B4B-4428-A9F8-B446256C9581}</template>
o Update the GUID of the ProductTemplatelDin the IncludeTemplatessection. For more
information, see the section 3.1.6 The product index
o Update the type attribute of the Product entity entry in the Commerce.Entitiessection of
the Sitecore.CommerceProduct.config
<commerce.Entities>
<Product type="Sitecore.Commerce.Entities.Products.Product, Sitecore.Commerce" />
e Update the GUID of the ProductTemplatelDin the ExncludeTemplatessection of the
Sitecore.Commerce.Products.LuceneDefaultindexConfiguration.config file. For more information,
see the section 3.1.6 The defaultindex.
e In case 2-way synchronizing is used, then:
o Create a custom ResolveProductChanges, thatinherits from the default
Sitecore.Commerce.Pipelines.Products. SynchronizeProductEntity.ResolveProduc
tChanges class. For more information, see section

New properties which refer to itemsin related repositories, like Manufacturers, should load a collection of
the given type and populate the values. Some internal helper methods, like
PopulateEntityFieldCollections, are provided. Belowis an example of how the Manufacturers collectionis
populated while loading the product entity.

entity.Manufacturers = this.PopulateEntityFieldCollections (

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 49 of 59

Sitecore Commerce Connect @ sitecore

entityItem,
"Manufacturer",
typeof (Manufacturer),
new Dictionary<string, string> { { "ExternalId", "ExternalID" }, { "Name",
"Name" }, { "Description", "Description" } })
.Cast<Manufacturer> () .ToList () ;

The actual manufacturertype should be created by calling the Create method on the type
Sitecore.Commerce.Entities.EntityFactory, butthisisleftoutto simplifythe example.

The PopulateEntityFieldCollections method hasthe following signature:

/// <summary>

/// Fills the entity collections.

/// </summary>

/// <param name="entityItem">The entity item.</param>

/// <param name="fieldName">Name of the field.</param>

/// <param name="collectionMemberType">Type of the collection member.</param>

/// <param name="properties">The properties.</param>

/// <returns>

/// The collection of the product entities.

/// </returns>

private IEnumerable<ProductEntity> PopulateEntityFieldCollections(Item entityItem,
string fieldName, Type collectionMemberType, IDictionary<string, string> properties)

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 50 of 59

Sitecore Commerce Connect @ Sltecore

3.6 How to Create aCustom ResolveChangesProcessor

For 2-way synchronization to work, a processor must be present, which compares the two entities
originating from Sitecore and the external system respectively.

A base processor Sitecore.Commerce.Pipelines.Products.ResolveChangesProcessor doesmost of
the work and resolves the configured SynchronizationStrategy to use for comparison.

The responsibility of the processor is to read two product entitiesfrom Sitecore and the external system
respectively, compare and resolve the changesand return the resulting entity along with an indication of
where the result must be saved.

Note

The current ResolveChangesProcessor implementation only saves one collection of resulting entitiesto
be saved, which meansthe same instances will be saved to both Sitecore and the external system in
case the directionis set to both. A custom version could save different versions to two separate
collectionsto be saved inthe two systems respectively.

Note

The two processors responsible for reading the product entitiesfrom Sitecore and the external system
respectively, must write the result to two distinct and different pipeline arguments, so thatthey do not
interfere.

To create a custom processor for a given entity type the following steps are needed:

1. Create a new class which inheritesfrom ResolveChangesProcessor
Leave the constructor empty, but make sure to call the base constructor

2. Override the GetSitecoreEntitiesmethod. The method must read the stored Sitecore
entitiesand return an enumerable collection of objectsof the given type. Naming
convention forthe PipelineArgscollectionisto prefix the type name with the word
“Sitecore” as the key. Example: “SitecoreManufacturers’

3. Override the GetExternalCommerceSystemEntitiesmethod. The method must read the
stored external entitiesand return an enumerable collection of objectsof the given type.
Naming convention forthe PipelineArgsisto simply use the type name as the key.
Example: “Manufacturers’

4. Override the SaveEntitiesmethod. The method must save the resulting entitiesto the
PipelineArgscollection. Naming convention isto use the type name as the key. Example:
“Manufacturers’

The implementation of the ResolveManufacturerChangesis shown inthe code snippet below.

public class ResolveManufacturersChanges : ResolveChangesProcessor

{
/ <summary>
/ Initializes an instance of the <see cref="ResolveManufacturersChanges" /> class.
</summary>

/// <param name="synchronizationStrategy">The synchronization strategy.</param>
public ResolveManufacturersChanges ([NotNull] ISynchronizationStrategy
synchronizationStrategy) : base(synchronizationStrategy)
{
}

<summary>
/ Gets entities stored in Sitecore.

</summary->

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 51 of 59

Sitecore Commerce Connect @ sitecore

/// <param name="args">The arguments.</param>

/// <returns>Sitecore entities.</returns>

protected override IEnumerable<ProductEntity> GetSitecoreEntities (ServicePipelineArgs
args)

return args.Request.Properties["SitecoreManufacturers"] as
IEnumerable<ProductEntity> ?? Enumerable.Empty<Manufacturer>();
}

/// <summary>

/// Gets entities stored in external commerce system.

/// </summary>

/// <param name="args">The arguments.</param>

/// <returns>External commerce system entities.</returns>

protected override IEnumerable<ProductEntity>
GetExternalCommerceSystemEntities (ServicePipelineArgs args)

{

return args.Request.Properties["Manufacturers"] as IEnumerable<ProductEntity> ??
Enumerable.Empty<Manufacturer> () ;
}

/// <summary>

/// Saves the entities to the arguments.

/// </summary>

/// <param name="args">The arguments.</param>

/// <param name="productEntities">The product entities.</param>

protected override void SaveEntities (ServicePipelineArgs args,
IEnumerable<ProductEntity> productEntities)

{

args.Request.Properties["Manufacturers"] = productEntities.Cast<Manufacturer>();

Sitecore® is a registered trademerk. All other brand and product nanmes are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 52 of 59

Sitecore Commerce Connect @ sitecore

3.7 How to Create aCustom Synchronization Strategy

In order to use a custom synchronization strategy itis necessary to perform the following two steps:
1. Create new custom strategy class and implement ISynchronizationStrategy interface.

This interface contains one Resolve method that receives direction of synchronization and base
product entity from external system and Sitecore.

Resolve method should decide which system to update (ECS or Sitecore) and return the result.

namespace Sitecore.Commerce.Products

{
using Sitecore.Commerce.Entities.Products;

/// <summary>
/// The SynchronizationStrategy interface.
/// </summary>
public interface ISynchronizationStrategy
{

/// <summary>

/// Resolves the specified direction.

/// </summary>

/// <param name="direction">The direction.</param>

/// <param name="externalSystemEntity">The external system entity.</param>

/// <param name="sitecoreEntity">The entity from content management system.</param>

/// <returns>The place, where we decide if entity is updated.</returns>
UpdateIn Resolve(Direction direction, ProductEntity externalSystemEntity,
ProductEntity sitecoreEntity):
}
}

2. Register custom synchronization strategy class in Sitecore.Commerce.Products.config.

To do this, change type attribute value of synchronizationStrategy element to custom
synchronization strategy type.

<synchronizationStrategy

type="Sitecore.Commerce.Products.DateTimeSynchronizationStrategy, Sitecore.Commerce"
singleInstance="true" />

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 53 of 59

Sitecore Commerce Connect

@ sitecore

The default DateTime based strategy coming with Connect isthe simplest possible strategy:

/// <summary>

/// The synchronization strategy based on updated date of entity in external system and
content management system.

/// </summary>

public class DateTimeSynchronizationStrategy

{

/77

/// <summary>

/// Resolves the specified direction.
/// </summary>

/// <param name="direction">The direction.</param>
/// <param name="externalSystemEntity">The external
<param name="sitecoreEntity">The entity from content management system.</param>
/// <returns>

/// The place, where we decide if entity is updated
/// </returns>

public UpdatelIn Resolve(Direction direction,

ProductEntity sitecoreEntity)

|| direction

ISynchronizationStrategy

system entity.</param>

ProductEntity externalSystemEntity,

if (string.IsNullOrEmpty(sitecoreEntity.Externalld) && (direction == Direction.Both

== Direction.Inbound))

{

return UpdateIn.Sitecore;

if (externalSystemEntity.Updated == sitecoreEntity.Updated)

{

return UpdatelIn.None;

if (externalSystemEntity.Updated < sitecoreEntity
{
if (direction == Direction.Both || direction ==
{
return UpdateIn.ExternalCommerceSystem;
}
}
else
{
if (direction == Direction.Both || direction ==
{
return UpdatelIn.Sitecore;

return UpdatelIn.None;

.Updated)

Direction.Outbound)

Direction.Inbound)

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 54 of 59

Sitecore Commerce C onnect @ sitecore

3.8 How to Implement a Custom ID Generator

The responsibility of the ID generator isto take a unique external IDin form of a string and return a
unique ID which can be used asan item ID, e.g. GUID. The defaultimplementationisbased on the MD5

hash algorithm.

Note
Sitecore ID’s must be unique and since the output from the IDGeneratorisused as a Sitecore ID, itis

important to always prefix the unique external ID with an arbitrary but fixed string, in order to avoid
collision. Forexample, the IDs for manufacturers in the external system repository might have overlap
with the IDs for the products, even though they are unique within theirown range. The inputto
IDGenerator must therefore be in the following format: “Manufacturer“ + ManufacturerlD and “Products *
+ ProductlD respectively.

In order to use a custom ID generator, itis necessary to perform the following two steps:

1. Create new ID Generator class and implement lldGeneratorinterface.
The interface has one StringTolD method that accepts two parameters:
a. a string containing the value of the external ID of the given entity
b. a string containing a unique prefixto avoid collision between identical valuesused for
different entities.
The method returns a GUID as result, which isused to assign to the corresponding itemin
Sitecore representing the external entity.

/// <summary>

/// Defines interface for id generator.

/// </summary>

public interface IIdGenerator

{
/// <summary>
/// String to Sitecore ID.
/// </summary>
/// <param name="value">The value.</param>
/// <param name="prefix">The prefix.</param>
/// <returns>The generated ID</returns>
[NotNull]
ID StringToID([NotNull] string value, [NotNull] string prefix);

2. Register custom ID Generator class in Sitecore.Commerce.Products.config.
To do this, change type attribute value of “idGenerator’ element to the custom ID Generator type.

<idGenerator type="Sitecore.Commerce.Data.Products.Md5IdGenerator,
Sitecore.Commerce" singleInstance="true" />

The defaultimplementation isbased on the MD5 hash algorithm provided in .NET. The source code is
listed below:

/// <summary>
/// Defines default implementation of id generator.
/// </summary>
public class Md5IdG
{

/// <summary>

/// String to Sitecore ID.

1erator : IIdGenerator

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 55 of 59

Sitecore Commerce Connect @ sitecore

/// </summary>

/// <param name="value">The value.</param>

/// <param name="prefix">The prefix.</param>

/// <returns>The generated ID</returns>

public ID StringToID(string value, string prefix)

{
Assert.ArgumentNotNull (value, "value");
Assert.ArgumentNotNull (prefix, "prefix");

// Create a new instance of the MD5CryptoServiceProvider object.
var mdS5Hasher = MD5.Create();

// Convert the input string to a byte array and compute the hash.
var data = md5Hasher.ComputeHash (Encoding.Default.GetBytes (prefix + value));
return new ID(new Guid(data));

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 56 of 59

Sitecore Commerce Connect @ Sltecore

3.9 Performance tuning

For information on steps taken to improve performance, see the Sitecore Commerce Connect Overview

document.

Immediate ordelayed bucket synchronization. When a new item is created in a bucket, itis
immediately placed in the root folder. In order to move itinto the right place, the bucket needs
to be synchronized and there is a couple of ways it can be done. For more information on
how to enable delayed bucketing, see section 3.10 Delayed Bucket Synchronization.

o When synchronizing a single product, itcan immediately be moved to the right place
inthe bucket. Calling SynchronizeProduct as asingle operationisdoing this by
calling BucketManager .MoveItemIntoBucket (entityItem, root);

o Doing a bulk synchronization by calling SynchronizeProducts or
SynchronizeProductList can cause the creation of manynew itemsthat needs
to be synchronized. When doing bulk synchronizing, itis faster to delay the bucket
synchronization until all new productitems have been processed. To further reduce
the time spent synchronizing the products bucket, a temporary bucket is used for new
product items. The temporary bucket is synchronized after all products have been
processed and the bucket contentis moved to the main bucket. That will eliminate
the time spent touching all existing itemsin the bucket, which could be significant,
e.g.adding a 1.000 new product itemsto a bucket with 1.000.000 productitems, will
touch 1.001.000 itemsto make sure they have not changed.

Multi-threaded synchronization. A single thread is by default spawned to synchronize products,
manufacturers, types, resources, divisions, and specificationsin parallel. The threadsare
spawned for each repository being synchronized. The number of threads to use can be
configured inthe Sitecore.Commerce.Products.config file. The defaultisl

<setting name="ProductSynchronization.NumberOfThreads" value="8" />

Note
Due to issues in Sitecore CMS, using more than 1 thread can result ina SQL server deadlock

situation, which is why the default configuration only specifies1 thread.

Disabling ofindexing, eventsand caching. Triggering of item eventsas well asindexingis
disabled while synchronizing in order not to waste resources on firing events or starting
indexing before synchronization isdone. Indexing isturned on after synchronization has
finished. For more information, see section 3.1.6 Indexing.

Reading product data ones and process itin multiple pipelineswill reduce the number of calls
between Sitecore and the external systems. All product entitiesin Connectare synchronized
using its own pipeline, which naturally lendsitself to reading the data from the external system
inthe individual pipelines. In that case, synchronizing a single product can amountto a fair
amount of calls between the systems and each call takes time and resources. The design does
not prevent product data to be read onesinitially and passed on to the individual sub -pipelines
for processing, reducing the number of calls between the systems.

Resources can be located externally. Resources in Sitecore are stored as mediaitemsinthe
media library. Media itemsare binary blobsand can be rather large and time consuming to
importinto Sitecore and for that reason, resources can eitherbe imported into Sitecore media
library or simply referred to externally. If resources are imported, they are stored in a bucketed
folder called Products under the media library. If notimported, they can be referred to by a URI

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 57 of 59

Sitecore Commerce Connect @ sitecore

stored on the resource reference item. The defaultimplementation of Connect supports both
scenarios.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 58 of 59

Sitecore Commerce C onnect @ sitecore

3.10Delayed Bucket Synchronization

There’s several ways to have products synchronized into the Bucket where the main productdatais
stored. Itcan be done:

¢ Immediately, which isthe default and fastest approach.

e Atthe end of the entire Commerce Connect product synchronization. Thisapproachis also
implemented in Commerce Connect and can be activated by enabling the config file
Sitecore.Commerce. Products.DelayedSyncProductRepository.config.disabled
Thisisdone by removing the postfix “.disabled”

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this docunent are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 59 of 59

